PřF:M2110 Linear Algebra II - Course Information
M2110 Linear Algebra and Geometry II
Faculty of ScienceSpring 2011 - only for the accreditation
- Extent and Intensity
- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
Ing. Mgr. Dávid Dereník (seminar tutor)
doc. RNDr. Jiří Kaďourek, CSc. (seminar tutor)
doc. Mgr. Ondřej Klíma, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Martin Čadek, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M1110 Linear algebra I || M1111 Linear Algebra I ||( FI:MB003 Linear Algebra and Geometry I )
Knowledege of basic notion of linear algebra is supposed. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, B-IN)
- Informatics (programme FI, N-IN)
- Mathematical Biology (programme PřF, B-BI)
- Mathematics - Economics (programme PřF, B-AM) (2)
- Mathematics (programme PřF, B-MA)
- Mathematics (programme PřF, B-MA)
- Profesional Mathematics (programme PřF, B-MA)
- Profesional Statistics and Data Analysis (programme PřF, B-AM)
- Statistics and Data Analysis (programme PřF, B-AM)
- Course objectives
- The aim of this second course in linear algebra is to introduce other basic notions of linear algebra. Passing the course the stuidents *will know affine spaces, bilinear and quadratic forms, eingenvalues and eigenvectors of linear operators, *they will be able to solve problems concerning the spaces with scalar product and properties of orthogonal and selfadjoint operators and *to find the Jordan canonical form.
- Syllabus
- Affine geometry: affine spaces and subspaces, affine geometry and affine mappings. Linear forms: dual space, dual basis, dual homomorphism. Bilinear and quadratic forms: definition, matrix with respect to given basis, diagonalization, signature. Euklidean geometry: orthogonal projection, distance and deviation of affine subspaces. Linear operators: invariant subspaces, eigenvalues and eigen vectors, charakteristic polynomial, algebraic and geometric multiplicity of eigenvalues, conditions for diagonalization. Ortogonal a unitar operators: definition and basic properties, eigenvalues, geometric meaning. Self adjoint operators: adjoint operator, symmetric and hermitian matrices, spectral decomposition. Jordan canonical form: nilpotent endomorphisms, root subspaces, computations.
- Literature
- Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
- Teaching methods
- Lectures and exercises (tutorials).
- Assessment methods
- Exam: witten and oral. Requirements to the exam: to obtain internal credit from exercises.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Information on completion of the course: ukončení zápočtem možné pouze rozhodnutím učitele
The course is taught annually.
The course is taught: every week.
Credit evaluation note: 2 kr. zápočet. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.math.muni.cz/~cadek
- Enrolment Statistics (Spring 2011 - only for the accreditation, recent)
- Permalink: https://is.muni.cz/course/sci/spring2011-onlyfortheaccreditation/M2110