F8302 Collective and cooperative phenomena

Faculty of Science
spring 2012 - acreditation

The information about the term spring 2012 - acreditation is not made public

Extent and Intensity
2/1/0. 2 credit(s) (plus extra credits for completion). Type of Completion: k (colloquium).
Teacher(s)
prof. Mgr. Dominik Munzar, Dr. (lecturer)
doc. Mgr. Jiří Chaloupka, Ph.D. (seminar tutor)
prof. Mgr. Dominik Munzar, Dr. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Condensed Matter Physics – Physics Section – Faculty of Science
Contact Person: prof. Mgr. Dominik Munzar, Dr.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Introduction to collective and cooperative phenomena in condensed matter physics with emphasis on superconductivity. At the end of the course students should be able to understand the basic concepts of this field of physics such as the broken symmetry or the order parameter, to solve simple related problems, in particular from the field of superconductivity, to compare the results of model calculations with experimental data and/or analyze the data in terms of the models.
Syllabus
  • 1. Introduction.
  • (a) Collective and cooperative phenomena in condensed matter physics. (b) Concept of broken symmetry.
  • 2. Bose-Einstein condensation and superfluidity.
  • (a) Theoretical foundations. (b) Bose-Einstein condensation in atomic gases. (c) Superfluidity in liquid helium.
  • 3. Superconductivity.
  • (a) Survey of experimental observations. (b) Thermodynamics of superconductors, London equations, fundamentals of the Ginzburg-Landau theory. (c) Fundamentals of the BCS theory. (d) Josephson phenomena in superconductors and in liquid He, quantum interference on a macroscopic scale. (e) High-temperature superconductors. (f) Selected applications of superconductivity.
  • 4. Magnetic interactions in solids.
  • (a) Solid state Hamiltonian in the Wannier representation, approximate Hamiltonians: the Hubbard Hamiltonian, exchange terms connected with the first Hund's rule. (b) Derivation of the Heisenberg Hamiltonian for insulators. (c) Magnetism withoul localized spins.
Literature
  • ANNETT, James F. Superconductivity, superfluids, and condensates. 1st pub. Oxford: Oxford University Press, 2004, xi, 186. ISBN 0198507569. info
  • BLUNDELL, Stephen. Magnetism in condensed matter. Oxford: Oxford University Press, 2001, xii, 238. ISBN 0198505922. info
Teaching methods
Lectures. Class seminars with solutions of typical problems presented and discussed.
Assessment methods
Active presence at the class exercises, including solution of a certain amount of problems (2-3) by the students, is required. During the colloquium, the topics of the course are discussed, in order to assess the student's knowledge, the evaluation reflects the degree of understanding.
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Spring 2024, Spring 2025.