C8140 Bioenergetics

Faculty of Science
Spring 2014
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Igor Kučera, DrSc. (lecturer)
Guaranteed by
prof. RNDr. Igor Kučera, DrSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Igor Kučera, DrSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science
Timetable
Thu 9:00–10:50 C05/114
Prerequisites
C4182 Biochemistry II || C3580 Biochemistry
Basic courses in biochemistry and physical chemistry are recommended.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 21 fields of study the course is directly associated with, display
Course objectives
At the end of the course students should be able to understand and explain the main types of energy transformations in living cells, with emphasis on mechanisms of coupling chemical or photochemical processes with a transport across biological membranes. It should also be able to justify the choice of experimental methods suitable to study a specific bioenergetic problem.
Syllabus
  • 1) History and the present status of bioenergetics. Energy conversions in living organisms: an overview and thermodynamic description. 2) Macroergic compounds. Mechanisms of substrate-level energy conservation. 3) Biomembranes: lipids, proteins and their mutual interactions. Determination of the structure of membrane-bound proteins. 4) Mechanisms of membrane transport. Transporters, channels, ionophores. Membrane-bound transport ATPases. Rotational catalysis in the proton-translocating ATPase. 5) Enzymes, prosthetic groups and electron carriers involved in important redox reactions. 6) Membrane-bound electron-transport chains. Approaches to the study of the electron-transport chains. Artificial electron donors and acceptors. The coupling of redox reaction with proton gradient formation. 7) Isolation, ultrastructure and metabolic activities of mitochondria. Transport of proteins, inorganic ions and metabolites across the mitochondrial membrane. 8) Mitochondrial respiration and oxidative phosphorylation. 9) Aerobic respiration in chemoorganotrophic and chemolithotrophic bacteria. 10) Anaerobic respiration. Regulation mechanisms in facultative anaerobes. 11) Bacteriorhodopsin-based photosynthesis. Anoxygenic and oxygenic photosynthesis dependent on (bacterio)chlorophyll, cooperation of two photosystems in oxygenic photosynthesis. 12) Metabolic cooperation of mitochondria, chloroplasts and cytoplasm. 13) Mechanochemical energy conversions. Thermogenesis in brown fat tissue. Bioluminiscence. Bioenergetics of sodium ion. 14) Evolution of bioenergetic processes. Bioenergetics and the cycles of biogenic elements in the nature.
Literature
  • FERGUSON, Stuart J. and David G. NICHOLLS. Bioenergetics 2. 2nd ed. London: Academic Press, 1992, 255 s. ISBN 0125181248. info
  • DADÁK, Vladimír and Igor KUČERA. Nové poznatky z bioenergetiky (Recent advances in bioenergetics). Praha: Státní pedagogické nakladatelství, 1988, 128 pp. skriptum. info
  • KUČERA, Igor. Řešené úlohy z bioenergetiky (Solved problems from bioenergetics). Praha: Státní pedagogické nakladatelství, 1985, 151 pp. info
  • PEUSNER, L. Základy bioenergetiky. 1. vyd. Bratislava: Alfa, 1984, 277 s. info
Teaching methods
Lectures
Assessment methods
A one semester lecture course, 2 x 45 min per week. The examination is mainly written. It takes 60 min and consists of three parts, one of them being concerned with quantitative aspects. An oral part of the examination then follows.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2014, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2014/C8140