PřF:M4010 Equations of math. physics - Course Information
M4010 Equations of mathematical physics
Faculty of ScienceSpring 2014
- Extent and Intensity
- 3/2/0. 4 credit(s) (plus 2 credits for an exam). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Zdeněk Pospíšil, Dr. (lecturer)
Mgr. Michael Krbek, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Zdeněk Pospíšil, Dr.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 14:00–16:50 M6,01011, Thu 17:00–18:50 F3,03015, Thu 18:00–19:50 F3,03015
- Prerequisites
- Single- and multivariable differential and integral calculus, curve and surface integral, ordinary differential equations.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Physics (programme PřF, B-FY)
- Course objectives
- The discipline is a part of the fundamental course of mathematical analysis for students of physics. At the end of this course, students should be able to:
classify partial differential equations;
select an appropriate classical analytical method of solution depending on type of equation;
find solution in terms of integral or infinite series for basic equations. - Syllabus
- Boundary value problems for ordinary differential equations.
- Special functions: Gamma function, Bessel functions, Legendre, Laguerre a Hermite polynomials.
- Distributions.
- Methods of characteristics: quasilinear 1st order equation, canonical form of 2nd order equations, initial value problem for wave equations.
- Methods of integral transforms: Fourier, Laplace transforms.
- Methods of separation of variables: wave equation, heat equation, eliptic equation, Schroedinger equation.
- Eliptic equations: harmonic functions, potentials, Green function.
- Literature
- Franců Jan. Parciální diferenciální rovnice. VUT Brno, 2000
- EVANS, Gwynne, Jonathan M. BLACKLEDGE and Peter YARDLEY. Analytic methods for partial differential equations. London: Springer-Verlag, 1999, xii, 299. ISBN 3540761241. info
- RENARDY, Michael and Robert ROGERS. An introduction to partial differential equations. New York: Springer-Verlag, 1992, vii, 428. ISBN 0387979522. info
- BARTÁK, Jaroslav. Parciální diferenciální rovnice. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1988, 220 s. URL info
- MÍKA, Stanislav and Alois KUFNER. Parciální diferenciální rovnice. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1983, 181 s. info
- MÍKA, Stanislav and Alois KUFNER. Okrajové úlohy pro obyčejné diferenciální rovnice. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1981, 88 s. URL info
- TICHONOV, Andrej Nikolajevič and Aleksandr Andrejevič SAMARSKIJ. Rovnice matematické fysiky. Translated by Alois Apfelbeck - Karel Rychlík. 1. vyd. Praha: Nakladatelství Československé akademie věd, 1955, 765 s. info
- Teaching methods
- Lecture and class exercises with demonstrative and individual solution of tasks.
- Assessment methods
- Written examination and subsequent oral one. One half of possible points in the written part is necessary to pass (usually 25 points of 50 total).
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2014, recent)
- Permalink: https://is.muni.cz/course/sci/spring2014/M4010