PřF:C9042 Chromatin structure analysis - Course Information
C9042 Analysis of chromatin structure - practical training
Faculty of ScienceSpring 2015
- Extent and Intensity
- 0/2. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- prof. RNDr. Jiří Fajkus, CSc. (seminar tutor)
Mgr. Eva Sýkorová, CSc. (seminar tutor)
doc. Mgr. Petra Procházková Schrumpfová, Ph.D. (seminar tutor)
doc. Mgr. Miloslava Fojtová, CSc. (seminar tutor) - Guaranteed by
- prof. RNDr. Jiří Fajkus, CSc.
National Centre for Biomolecular Research – Faculty of Science
Supplier department: National Centre for Biomolecular Research – Faculty of Science - Prerequisites
- NOW( C9041 Struct. euk. chromosomes )
Basic knowledge of molecular biology and biochemistry, parallel or previous subscription of the course Structure and function of eukaryotic chromosomes (Bi9041), knowledge of laboratory safety instructions - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 12 student(s).
Current registration and enrolment status: enrolled: 0/12, only registered: 0/12, only registered with preference (fields directly associated with the programme): 0/12 - fields of study / plans the course is directly associated with
- Genomics and Proteomics (programme PřF, N-BCH)
- Molecular Biology and Genetics (programme PřF, N-EXB)
- Course objectives
- In the end of the course, students will be practically able to apply knowledge gained in the lecture course Structure and function of eukaryotic chromosomes (Bi9041). The aim of the course is to provide students with practical experience with methods used in analysis of the structure of chromosomes and chromatin.
Main objectives:
Student will be able: to isolate cell nuclei
to learn how to isolate and analyse histones
to learn MNase digestion of chromatin and analyse nucleosome spacing - Syllabus
- 1. Isolation of cell nuclei from animal and plant tissues 2. Digestion of nuclei with micrococcal nuclease 3. Extraction of nucleosomal DNA 3. Analysis of nucleosomal DNA by electrophoresis 4. Preparation of mononucleosomal DNA from agarose gel 5. Mapping of nucleosome position using restriction enzymes or primer extension 6. Computer modelling of nucleosome position 7. Comparison of experimental and computer-predicted results 8. Extraction of chromatin proteins 9. Analysis of chromatin proteins by SDS-PAGE
- Literature
- FAJKUS, Jiří, Andrew R. LEITCH, Michael CHESTER and Eva SÝKOROVÁ. Evolution, Composition and Interrelated Functions of Telomeres and Subtelomeres: Lessons from Plants. In Origin and Evolution of Telomeres. USA: Landes Biosciences, 2008, p. 114-127. ISBN 978-1-58706-309-1. info
- FAJKUS, Jiří and Edward N. TRIFONOV. Columnar Packing of Telomeric Nucleosomes. Biochemical and Biophysical Research Communications. California: Academic Press, 2001, roč. 280, No 4, p. 961-963. ISSN 0006-291X. info
- Teaching methods
- Practical laboratory training - intensive block teaching
- Assessment methods
- Written protocol emphasizing problems met during the project solving and discussion of the results. Final group discussion of the course experience.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
The course is taught in blocks.
- Enrolment Statistics (Spring 2015, recent)
- Permalink: https://is.muni.cz/course/sci/spring2015/C9042