F2650 What is life?

Faculty of Science
spring 2018
Extent and Intensity
1/1. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
Teacher(s)
prof. RNDr. Martin Černohorský, CSc. (seminar tutor)
Guaranteed by
prof. RNDr. Jana Musilová, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Wed 18:00–18:50 Fs1 6/1017
  • Timetable of Seminar Groups:
F2650/01: Wed 19:00–19:50 Fs1 6/1017
Prerequisites (in Czech)
1. Do prosemináře "Co je život?" má přístup každý student/ka Masarykovy univerzity, aniž se požaduje předchozí absolvování některého předmětu. Výhodou, ne však podmínkou, jsou znalosti resp. dispozice užitečné pro orientaci v matematicko-fyzikální problematice a znalosti z biologie, především z genetiky. Uvádí-li se, že kniha by měla být povinnou četbou pro všechny studenty bez ohledu na jejich studijní obor, je to sice nadsázka, ale nadsázka, která význam knihy dobře vystihuje. V duchu tohoto názoru je seminář veden.
2.U zájemců o ukončení předmětu zápočtem se předpokládá v počátečních týdnech semestru povědomí o existenci knihy Erwina Schrödingera "Co je život?" a zapsání předmětu na základě dobré obeznámenosti se všemi údaji o předmětu uvedenými v Informačním systému Masarykovy univerzity.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The study of Schrödinger's book "What Is Life?" may be for students difficult because of its multidisciplinarity – physics, biology, chemistry, mathematics.
The aim of the course is good understanding of all chapters and ability to explain rightly their main ideas.
Historical notes and actual remarks are organic parts of the course.
Syllabus
  • F2650 Co je život?
  • Erwin Schrödinger: WHAT IS LIFE?
  • THE PHYSICAL ASPECT OF THE LIVING CELL.
  • 1. THE CLASSICAL PHYSICIST'S APPROACH TO THE SUBJECT.
  • #1. The general character and the purpose of the investigation.
  • #2. Statistical physics. The fundamental difference in structure.
  • #3. The naïve physicist's approach to the subject.
  • #4. Why are the atoms so small?
  • #5. The working of an organism requires exact physical laws.
  • #6. Physical laws rest on atomic statistics and are therefore only approximate.
  • #7. Their precision is based on the large number of atoms intervening. 1st example (paramagnetism).
  • #8. 2nd example (Brownian movement, diffusion).
  • #9. 3rd example (limits of accuracy of measuring).
  • #10. The Ön rule.
  • 2. THE HEREDITARY MECHANISM.
  • #11. The classical physicist's expectation, far from being trivial, is wrong.
  • #12. The hereditary code-script (chromosomes).
  • #13. Growth of the body by cell division (mitosis).
  • #14. In mitosis every chromosome is duplicated.
  • #15. Reductive division (meiosis) and fertilization (syngamy).
  • #16. Haploid individuals.
  • #17. The outstanding relevance of the reductive division.
  • #18. Crossing-over. Localization of properties.
  • #19. Maximum size of a gene.
  • #20. Small numbers of atoms in one gene.
  • #21. Permanence of genes.
  • 3. MUTATIONS.
  • #22. `Jump-like` mutations – the working-ground of natural selection.
  • #23. They breed true, i.e. they are perfectly inherited.
  • #24. Localization. Recessivety and Dominance.
  • #25. Introducing some technical language.
  • #26. The harmful effect of close-breeding.
  • #27. General and historical remarks.
  • #28. The necessity of mutation being a rare event.
  • #29. Mutations induced by X-rays.
  • #30. First law. Mutation is a single event.
  • #31. Second law. Localization of the event.
  • 4. THE QUANTUM-MECHANICAL EVIDENCE.
  • #32. Permanence unexplainable by classical physics.
  • #33. Explicable by quantum-theory.
  • #34. Quantum theory – discrete states – quantum jumps.
  • #35. Molecules.
  • #36. Their stability dependent on temperature.
  • #37. Mathematical interlude.
  • #38. Fine-structure of the level scheme.
  • #39. Isomerism.
  • 5. DELBRÜCK`S MODEL DISCUSSED AND TESTED.
  • #40. The general picture of the hereditary substance.
  • #41, The uniqueness of the picture.
  • #42. Some traditional misconceptions.
  • #43. Different `states` of matter.
  • #44. The distinction that really matters.
  • #45. The aperiodic solid.
  • #46. The variety of contents compressed in the miniature code.
  • #47. Comparison with facts: degree of stability; discontinuity of mutations.
  • #48. Stability of naturally selected genes.
  • #49. The sometimes lower stability of mutants.
  • #50. Temperature influences unstable genes less than stable ones.
  • #51. How X-rays produce mutations.
  • #52. Their efficiency does not depend on spontaneous mutability.
  • #53. Reversible mutations.
  • 6. ORDER, DISORDER AND ENTROPY.
  • #54. A remarkable general conclusion from the model.
  • #55. Order based on order.
  • #56. Living matter evades the decay to equilibrium.
  • #57. It feeds on `negative entropy`.
  • #58. What is entropy?
  • #59. The statistical meaning of entropy.
  • #60. Organization maintained by extracting `order` from the environment.
  • 7. IS LIFE BASED ON THE LAWS OF PHYSICS?
  • #61. New laws to be expected in the organism.
  • #62. Reviewing the biological situation.
  • #63. Summarizing the physical situation.
  • #64. The striking contrast.
  • #65. Two ways of producing orderliness.
  • #66. The new principle is not alien to physics.
  • #67. The motion of a clock.
  • #68. Clockwork after all statistical.
  • #69. Nernst`s Theorem.
  • #70. The pendulum clock is virtually at zero temperature.
  • #71. The relation between clockwork and organism.
  • EPILOG. ON DETERMINISM AND FREE WILL.
Literature
  • SCHRÖDINGER, Erwin. CO JE ŽIVOT? Fyzikální pohled na živou buňku; DUCH A HMOTA; K MÉMU ŽIVOTU [WHAT IS LIFE? ThePhysical Aspect of the Living Cell; MIND AND MATTER; AUTOBIOGRAPHICAL SKETCHES]. Přeložili Martin Černohorský a Marie Fojtíková. Brno, VUTIUM, 2004, 256 s. info
  • HALLIDAY, David, Robert RESNICK and Jearl WALKER. Fyzika :vysokoškolská učebnice obecné fyziky. Vyd. 1. Brno: VUTIUM, 2000, xxiv, 1198. ISBN 8171962147. info
  • SCHRÖDINGER, Erwin. What is Life? The Physical Aspect of the Living Cell; Mind and Matter; Autobiographical Sketches. 1st printed 1992, 8th 2001. Cambridge (U.K.): Cambridge University Press, 2001, 184 pp. Canto edition. ISBN 0 521 42708 8. info
  • SCHRÖDINGER, Erwin. Was ist Leben? : die lebende Zelle mit den Augen des Physikers betrachtet. Bern: A. Francke AG Verlag, 1946, 143 s. info
  • SCHRÖDINGER, Erwin. Was ist Leben? :die lebende Zelle mit den Augen des Physikers betrachtet. München: Piper, 1987. ISBN 3-492-03122-6. info
  • SCHRÖDINGER, Erwin. Čto takoje žizn'? : s točki zrenija fizika. Moskva: Atomizdat, 1972, 87 s. info
Teaching methods
Lectures with discussions
Assessment methods
Type of classwork seminar (workshop) with lectures and discussions. Student's activities: Participation in discussions, short assigned oral presentations (10 minutes), written tests ad hoc.
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2020.
  • Enrolment Statistics (spring 2018, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2018/F2650