PřF:M0160 Optimization Theory - Course Information
M0160 Optimization Theory
Faculty of Sciencespring 2018
- Extent and Intensity
- 2/2. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Petr Zemánek, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Roman Šimon Hilscher, DSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Fri 8:00–9:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- The course of M5170 Mathematical Programming is suitable for the part devoted to the linear and quadratic programming.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Finance Mathematics (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics with Informatics (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- The course is a free continuation of the course M5170 Mathematical Programming. Students will get knowledge and skill concerning basic methods of solutions of some optimization problems.
- Learning outcomes
- At the end of this course the students will be able to solve problems of the linear, integer, quadratic, and dynamic programming as well as basic problems of calculus of variations.
- Syllabus
- I. Linear programming.
- Ia. Integer programming.
- II. Quadratic programming.
- III. Dynamic programming: Bellman optimization principle, finite deterministic and stochastic decision models, infinite steps models.
- IV. Elements of the calculus of variations and discrete optimization: historical motivation, Euler-Lagrange equation and the first variation, second variation, elementary difference equations and recurrence relations, discrete calculus of variations.
- Literature
- recommended literature
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v R^n (Elements of convex analysis and optimization in R^n). 1st ed. Brno: Masarykova univerzita, 2005, 194 pp. ISBN 80-210-3905-1. info
- DANTZIG, George Bernard and Mukund Narain THAPA. Linear programming. New York: Springer, 2003, xxv, 448 s. ISBN 0-387-98613-8. info
- BAZARAA, Mokhtar S., John J. JARVIS and Hanif D. SHERALI. Linear programming and network flows. 2nd ed. New York: John Wiley & Sons, Inc., 1990, xiv+684 pp. ISBN 0-471-63681-9. info
- KÜNZI, Hans P., Wilhelm KRELLE and Werner OETTLI. Nichtlineare Programmierung. Berlin: Springer-Verlag, 1962, 221 s. info
- HAMALA, Milan. Nelineárne programovanie. 2. dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1972, 240 s. info
- KAUMAN, A. and R CRUON. Dynamické programovanie. Bratislavaa, 1969, 312 pp. Matematické metódy v ekonomike, Alfa. ISBN 302 - 063 - 69. info
- NEMHAUSER, George, L. Introduction to Dynamic Programming. New York: John Wiley, 1966, 350 pp. ISBN 0-8247-8245-3. info
- BELLMAN, Richard. Dynamic programming. Dover ed. Mineola, N.Y.: Dover Publications, 2003, xxv, 340. ISBN 0486428095. info
- GEL'FAND, Izrail Moisejevič and Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
- not specified
- ŠKRÁŠEK, Josef and Zdeněk TICHÝ. Základy aplikované matematiky. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1990, 853 s. ISBN 80-03-00111-0. info
- Teaching methods
- Theoretical lecture (2 hours) and seminar (2 hours).
- Assessment methods
- The exam has both written and oral components. In the written part students solve particular examples. In the oral part a question concerning one of the topic I-IV (see the syllabus above) is given and the knowledge of basic concepts is required.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (spring 2018, recent)
- Permalink: https://is.muni.cz/course/sci/spring2018/M0160