F8662 School Experiments Laboratory 2

Faculty of Science
Spring 2019
Extent and Intensity
0/3/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Jana Jurmanová, Ph.D. (seminar tutor)
RNDr. Pavel Konečný, CSc. (seminar tutor)
doc. Mgr. Zdeněk Navrátil, Ph.D. (seminar tutor)
RNDr. Luboš Poláček (seminar tutor)
Guaranteed by
doc. RNDr. Zdeněk Bochníček, Dr.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: RNDr. Pavel Konečný, CSc.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Timetable
Mon 18. 2. to Fri 17. 5. Tue 7:00–9:50 Fpp,02010
Prerequisites
Requirements of physics on the level of introductory course.
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The course is devoted to students of physics teaching. Absolving the course a student obtains following abilities and skills: Basic laboratory and technical skills. Ability to prepare perform and interpret demonstration experiment. Ability to interpret fundamental experiments in mechanics, thermodynamics, electrostatics, electricity and magnetism, oscillation, waves, acoustics, optics. Ability to explain how technical stuff works.
Syllabus
  • 1. Kinematics and dynamics (Newton's laws of motion, air track, friction, collisions, rotational kinematics and dynamics, moment of inertia, angular momentum, mechanical energy and work). 2. Statics (centre of mass, equilibrium of forces, equilibrium of torques, simple machines, elasticity, Hooke's law). 3. Electricity (Fraday's experiment on induction, Lenz's law, eddy current, Waltenhofen pendulum, transient phenomenon, inductor delaying a lamp, AC current, alternator, "phasor", current versus voltage phase shift, self-induction, Rhumkorff induction coil, mutual induction, demountable transformers, demountable transformer welder, resonance, series and parallel RLC resonance circuit, 3-phase AC power, motor, DC motor, AC motor synchronous, AC motor asynchronous, circuit breaker, fuse, diodes, semiconductor rectifiers.) 4. Electromagnetic waves (Lecher wire standing waves, Tesla transformer, radiowave, polarized electromagnetic wave, microwaves, microwaves -Young's double slit interference, simple radio receiver, radio transmitter, microwave oven.) 5. Wave optics (interference and diffraction, coherence length, coherence time, Young's double slit interference, diffraction on gratings, limit of resolution, Fresnel and Fraunhofer diffraction, interference, Newton's rings, laser diffraction variable single slit, holograms, refraction, polarization of refracted beam and Brewster's angle, polarization of scattered beam, total internal reflection - critical angle, birefringence, optical activity, Nicol prism, photoelasticity, measurement of the index of refraction). 6. Atomic and molecular physics (Brownian movement, diffusion, osmotic pressure, thermodynamics equilibrium, changes of state, isolated system, mechanical model of a gas - model of Brownian motion, diffusion, expansion, compression, velocity distribution, PVT gas apparatus, Charles' Law, Boyle's law, Gay Lussac's law, ideal gas law, mechanical equivalent of heat, steam engine, refrigerator, heat pump, Otto combustion engine, compression igniter).
Literature
  • HALLIDAY, David, Robert RESNICK and Jearl WALKER. Fyzika (Physics). 1st ed. Brno, Praha: Vutium, Prometheus, 2001. ISBN 80-214-1868-0. info
  • Feynman, Richard P. - Leighton, Robert B. - Sands, Matthew. Feynmanove prednášky z fyziky 1. 2. vyd. Bratislava : Alfa, 1986. 451 s. Edícia matematicko-fyzikálnej literatúry.
Teaching methods
practical work, laboratory course, class experiment
Assessment methods
The requirement for graded credit is to perform all exercises and pass three written and three oral examinations.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2019, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2019/F8662