M8200 Numerical solving of partial differential equations

Faculty of Science
Spring 2019
Extent and Intensity
2/1. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
Teacher(s)
Mgr. Jiří Zelinka, Dr. (lecturer)
Guaranteed by
prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: Mgr. Jiří Zelinka, Dr.
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science
Timetable
Mon 18. 2. to Fri 17. 5. Wed 8:00–9:50 M6,01011
  • Timetable of Seminar Groups:
M8200/01: Mon 18. 2. to Fri 17. 5. Fri 10:00–10:50 M3,01023, J. Zelinka
Prerequisites
Basics of Hilbert spaces theory.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The aim of this course is an overview of methods for the numerical solution of partial differential equations. The most common numerical methods for solving boundary value problems are presented. These methods are described theoretically and are also assessed in terms of stability, etc.
Syllabus
  • Theoretical foundations
  • Variational methods
  • Finite element method
  • Finite Difference Methods
Literature
    recommended literature
  • REKTORYS, Karel. Variační metody : v inženýrských problémech a v problémech matematické fyziky. Vyd. 6., opr. české 2. Praha: Academia, 1999, 602 s. ISBN 8020007148. info
  • VITÁSEK, Emil. Základy teorie numerických metod pro řešení diferenciálních rovnic. 1. vyd. Praha: Academia, 1994, 409 s. ISBN 8020002812. info
  • VITÁSEK, Emil. Numerické metody. Praha: Státní nakladatelství technické literatury, 1987, 512 s. URL info
  • REKTORYS, Karel. Metoda časové diskretizace a parciální diferenciální rovnice. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 361 s. URL info
  • RALSTON, Anthony. Základy numerické matematiky. 1. české vyd. Praha: Academia, 1973, 635 s. URL info
Teaching methods
Lectures and class exercises
Assessment methods
Oral exam
Language of instruction
Czech
Further Comments
Study Materials
The course is taught once in two years.
The course is also listed under the following terms Spring 2011 - only for the accreditation, Spring 2003, Spring 2011, Spring 2013, Spring 2015, Spring 2017.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/sci/spring2019/M8200