PřF:C4450 Organic Chemistry III-synth. - Course Information
C4450 Organic Chemistry III - synthesis
Faculty of ScienceSpring 2021
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Kamil Paruch, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Kamil Paruch, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science - Prerequisites
- ( C3022 Organic Chemistry II/1 || C3050 Organic Chemistry II )&& C5500 Stereochemistry of Org. Comp. && C7410 Structure and Reactivity
General, organic and physical chemistry - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- The course is a logical extension of introductory classes Organic Chemistry I (C2021) and Organic Chemistry II (C3050). The major goal is to provide the students with a comprehensive overview of modern synthetic methods routinely used in the organic chemistry laboratory and in industry, so that the students will be able to apply them in planning of effective preparations of organic compounds.
- Learning outcomes
- After passing the course, students will be able to design viable syntheses of organic molecules using traditional and modern methods of organic synthesis.
- Syllabus
- 1.General terms and principles and their application in organic synthesis.
- 2.Enolate chemistry. Preparation of enolates and selectivity of their formation. Usage of enolates in organic synthesis. Stereoselective reactions of enolates.
- 3.Enolate chemistry. Aldol reaction, Claisen reaction. Stereoselective reaction. Double stereodifferentiation. Wittig and Petersen reaction. Chemistry of sulfur ylides. Corey-Tchaykovsky reaction.
- 4.Selective nucleophilic additions to carbonyl group. Cram, Karabatsos, Felkin-Ahn and Heathcock models.
- 5.Interconversions of functional groups.
- 6.Interconversions of functional groups. Mitsunobu, Eschenmoser reactions, hydroborations. Iodolactonization.
- 7.Oxidation. Swern, Dess-Martin, Oppenauer, Sharpless and Jacobsen oxidation. Synthetic application. Epoxidation, dihydroxylation, preparation of vicinal aminoalcohols.
- 8.Reduction. Shapiro, Birch reduction. Catalytic hydrogenation, diimide reactions, hydrosilylations.
- 9.Rearrangements, pericyclic reactions. Cope, Claisen rearrangement. Diels-Alder, ene reactions and their hetero modifications.
- 10.Organometallic reactions. Grignard reagents, Stille, Suzuki and McMurry reactions, conjugate addition of organocuprates, reactions of organozinc reagents. Palladium reactions.
- 11.Multicomponent reactions. Mannich, Strecker, Ugi reactions and their stereoselective examples.
- 12.Multistep synthesis.
- 13.Protection groups and their application.
- 14.Modern organic synthesis. Combinatorial chemistry.
- Literature
- recommended literature
- KÜRTI, László. Strategic applications of named reactions in organic synthesis : background and detailed mechanisms. Edited by Barbara Czakó. Amsterdam: Elsevier, 2005, lii, 758. ISBN 0124297854. info
- BEŇOVSKÝ, Petr. Organická chemie : organická syntéza. 1. vyd. Brno: Masarykova univerzita, 2003, vi, 280. ISBN 8021032812. info
- not specified
- Science of synthesis. Edited by Keiji Maruoka. Stuttgart: Georg Thieme, 2012, xliii, 974. ISBN 9783131693716. info
- Encyclopedia of reagents for organic synthesis. Edited by Leo A. Paquette. 2nd ed. Chichester: Wiley, 2009, ccxx, 627. ISBN 9780470017548. info
- Organic reactions. Edited by S.E Denmark. New York: John Wiley & Sons, 2009. ISBN 9780470423745. info
- Teaching methods
- theory plus design of viable organic syntheses
- Assessment methods
- In the course of the semester, students will pass 2-3 tests covering the corresponding topics. The final exam consists of a written and an oral part. Evaluation is focused on students' ability to design viable organic synthesis plus understanding of scope and limitations of used organic transformations.
- Language of instruction
- English
- Further Comments
- Study Materials
The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- Enrolment Statistics (Spring 2021, recent)
- Permalink: https://is.muni.cz/course/sci/spring2021/C4450