PřF:C8155 Cell signaling - Course Information
C8155 Cell signaling
Faculty of ScienceSpring 2022
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Mgr. Tomáš Kašparovský, Ph.D. (lecturer)
Mgr. Gabriela Ilčíková (assistant) - Guaranteed by
- prof. Mgr. Tomáš Kašparovský, Ph.D.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. Mgr. Tomáš Kašparovský, Ph.D.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Wed 9:00–10:50 B11/335
- Prerequisites (in Czech)
- C4182 Biochemistry II || C3580 Biochemistry || C5720 Biochemistry
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine. Learning outcomes: At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Learning outcomes
- At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Syllabus
- 1.ypes of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3.Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. > (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- recommended literature
- KRAUSS, Gerhard. Biochemistry of signal transduction and regulation. 5th, completely rev. ed. Weinheim: Wiley-VCH, 2014, xxviii, 81. ISBN 9783527333660. info
- not specified
- VOET, Donald and Judith G. VOET. Biochemistry. 4th ed. Hoboken, N.J.: John Wiley & Sons, 2011, xxv, 1428. ISBN 9780470917459. info
- Biochemistry & molecular biology of plants. Edited by Bob B. Buchanan - Wilhelm Gruissem - Russell L. Jones. 2nd edition. Chichester: John Wiley & Sons, 2015, xv, 1264. ISBN 9780470714225. info
- Teaching methods
- Series of lectures
- Assessment methods
- Written exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
- Enrolment Statistics (Spring 2022, recent)
- Permalink: https://is.muni.cz/course/sci/spring2022/C8155