F8242E Plasma physics 2

Faculty of Science
Spring 2023
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Tomáš Hoder, Ph.D. (lecturer)
Guaranteed by
doc. Mgr. Tomáš Hoder, Ph.D.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: doc. Mgr. Tomáš Hoder, Ph.D.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Prerequisites (in Czech)
! F8242 Plasma physics 2 && !NOW( F8242 Plasma physics 2 )
Finished F5170 - Plasma physics
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives (in Czech)
Students taking this lecture will be able to explain some advanced parts from physics of electrical discharge formation, high-temperature plasma and practical application of several plasma and plasmachemical processes.
Learning outcomes (in Czech)
Student finishing this course should be able to:
• formulate in detail the Townsend theory of electrical breakdown;
• describe the formation mechanism and basic electrical characteristics of glow discharge, arc discharge, corona discharge and dielectric barrier discharge;
• be familiar with the principal application of discharge plasma, most particular with the sources of light, ions and electrons;
• explain the principle of thermonuclear fusion (TNF), describe the principles on magnetic and inertial confinement of thermonuclear plasma, its heating, and formulate the main technological challenges in further advance of TNF.
Syllabus (in Czech)
  • • Townsend theory of electrical breakdown
  • • Paschen law
  • • Glow discharge
  • • Arc discharge
  • • Plasma jets, plasmatrons, plasma metallurgy
  • • Corona discharge, xerox, electrostatic precipitator
  • • Dielectric barrier discharge
  • • PDP, HV generators, atmospheric electricity
  • • Light sources, Electron and ion sources and propulsion
  • • Thermonuclear fusion, Lawson criterion
  • • Systems of magnetical confinement of plasma
  • • Kruskal-Shafranov stability criterion
  • • Plasma heating and innertial fusion systems
  • • MHD generators
Literature
    recommended literature
  • FREIDBERG, Jeffrey P. Plasma physics and fusion energy. 1st pub. Cambridge: Cambridge University Press, 2007, xvii, 671. ISBN 9780521851077. info
  • MARTIŠOVITŠ, Viktor. Základy fyziky plazmy : učebný text pre magisterské štúdium. 1. vyd. Bratislava: Univerzita Komenského, 2006, 189 s. ISBN 802231983X. info
  • Plasma physics : confinement, transport and collective effects. Edited by Andreas Dinklage. Springer: Berlin, 2005, xx, 496. ISBN 3540252746. info
  • BITTENCOURT, Jose Augusto. Fundamentals of plasma physics. 3rd ed. Sao José dos Campos: National Institute for Space Research, 2003, xxiii, 678. ISBN 8590010031. info
  • NISHIKAWA, Kyoji and Masahiro WAKATANI. Plasma physics : basic theory with fusion applications. 3rd rev. ed. Berlin: Springer-Verlag, 2000, xiii, 342. ISBN 354065285X. info
  • ROTH, Reece J. Industrial plasma engineering. Volume 1, Principles. Bristol: Institute of Physics Publishing, 1995, xiii, 538. ISBN 0-7503-0317-4. info
  • CHEN, Francis F. Introduction to plasma physics and controlled fusion. 2nd ed. New York: Plenum Press, 1984, xv, 421. ISBN 0306413329. info
Teaching methods (in Czech)
lectures
Assessment methods (in Czech)
Final written exam
Language of instruction
English
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
General note: Není možné získat zároveň kredity za předmět F8242 a F8242E. (It is not possible to get credits for both the language versions of the course: F8242 and F8242E.).
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2022, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2023, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2023/F8242E