PřF:M0122 Time Series II - Course Information
M0122 Time Series II
Faculty of ScienceSpring 2024
- Extent and Intensity
- 2/2/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. David Kraus, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. David Kraus, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable of Seminar Groups
- M0122/01: Mon 19. 2. to Sun 26. 5. Thu 10:00–11:50 MP2,01014a, D. Kraus
- Prerequisites
- M9121 Time Series I
Calculus, linear algebra, basics of probability theory and mathematical statistics, theory of estimation and hypotheses testing, linear regression, basic methods of time series analysis, knowledge of R software - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics - Economics (programme PřF, M-AM)
- Mathematics (programme PřF, M-MA, specialization Applied Mathematics)
- Mathematics (programme PřF, N-MA, specialization Applied Mathematics)
- Course objectives
- The course offers a coverage of selected advanced methods and models for time series. The course covers theoretical foundations, statistical models and inference, software implementation, application and interpretation.
- Learning outcomes
- The students will gain a deeper understanding of the methods and their relations and learn to recognize situations that can be addressed by the models discussed in the course, choose an appropriate model, implement it and interpret the results.
- Syllabus
- Multivariate time series: basic characteristics (cross-covariance function) and inference for them, regression between time series, spurious regression and prewhitening, cointegration, unit root tests and cointegration tests.
- Vector autoregressive models: stationarity, cross-correlation, parameter estimation, prediction, Granger causality, cointegration in VAR models.
- State-space models: properties, Kalman filter, likelihood, missing data, Kalman smoother, dynamic linear models.
- Spectral analysis of time series: spectral decomposition of an autocovariance function, spectral density, spectral representation of a stationary process, spectral density of linear filters and ARMA processes, periodogram, estimation of a spectral density (kernel estimation, AR estimation), multivariate spectral analysis.
- Special models: GARCH models, fractional ARIMA models and other models.
- Literature
- BROCKWELL, Peter J. and Richard A. DAVIS. Time series :theory and methods. 2nd ed. New York: Springer-Verlag, 1991, xvi, 577 s. ISBN 0-387-97429-6. info
- COWPERTWAIT, Paul S. P. and Andrew V. METCALFE. Introductory time series with R. New York, N.Y.: Springer, 2009, xv, 254. ISBN 9780387886978. info
- CRYER, Jonathan D. and Kung-Sik CHAN. Time series analysis : with applications in R. 2nd ed. [New York]: Springer, 2008, xiii, 491. ISBN 9780387759586. info
- FORBELSKÁ, Marie. Stochastické modelování jednorozměrných časových řad. 1. vyd. Brno: Masarykova univerzita, 2009, iii, 245. ISBN 9788021048126. info
- HAMILTON, James Douglas. Time series analysis. Princeton, N.J.: Princeton University Press, 1994, xiv, 799 s. ISBN 0-691-04289-6. info
- SHUMWAY, Robert H. and David S. STOFFER. Time Series Analysis and Its Applications: With R Examples. Third Edition. New York: Springer-Verlag, 2011. Available from: https://dx.doi.org/10.1007/978-1-4419-7865-3. URL info
- Teaching methods
- Lectures, exercises, practical project
- Assessment methods
- Project, oral exam
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
- Teacher's information
- The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents.
The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics.
Assessment in all cases may be in Czech and English, at the student's choice.
- Enrolment Statistics (Spring 2024, recent)
- Permalink: https://is.muni.cz/course/sci/spring2024/M0122