PřF:M8986 Statistical inference II - Course Information
M8986 Statistical inference II
Faculty of ScienceSpring 2024
- Extent and Intensity
- 2/2/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (lecturer)
Mgr. Zdeňka Geršlová (seminar tutor) - Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 19. 2. to Sun 26. 5. Wed 8:00–9:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites (in Czech)
- M7986 Statistical inferences I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics for Multi-Branches Study (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- The main goal of the course is to become familiar with some basic principles of testing statistical hypotheses base on Wald principle, likelihood and score principle connecting the statistical theory with MC simulations, implementation in R, geometry, and statistical graphics; to understand and explain basic principles of parametric statistical inference for categorical data; to implement these techniques in R language; to be able to apply them to real data.
- Learning outcomes
- Student will be able:
to understand principles of likelihood and statistical inference for discrete data;
to select suitable probabilistic and statistical model in statistical inference for discrete data;
to build up and explain suitable simulation study for selected statistical test or confidence intervals for discrete data;
to build up and explain suitable statistical test for discrete data;
to apply statistical inference for discrete data;
to implement methods of statistical inference for discrete data in R. - Syllabus
- Discrete probability distributions, maximum likelihood estimates of their parameters.
- Principles of MC simulations in testing statistical hypotheses.
- Design in one-, two-, and multi-sample experiments.
- Design for contingency tables.
- Design in linear regression model for categorical data.
- Literature
- recommended literature
- KATINA, Stanislav, Miroslav KRÁLÍK and Adéla HUPKOVÁ. Aplikovaná štatistická inferencia I. Biologická antropológia očami matematickej štatistiky (Applied statistical inference I). 1. vyd. Brno: Masarykova univerzita, 2015, 320 pp. ISBN 978-80-210-7752-2. info
- COX, D. R. Principles of statistical inference. 1st ed. Cambridge: Cambridge University Press, 2006, xv, 219. ISBN 0521685672. info
- CASELLA, George and Roger L. BERGER. Statistical inference. 2nd ed. Pacific Grove, Calif.: Duxbury, 2002, xxviii, 66. ISBN 0534243126. info
- Teaching methods
- Lectures, practicals. On-line using MS Teams or full-time according to the according to the development of the epidemiological situation and the applicable restrictions.
- Assessment methods
- Homework, oral exam. The conditions may be specified according to the development of the epidemiological situation and the applicable restrictions.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- Přednášky budou probíhat prezenčně dle rozvrhu. V IS bude vždy k dispozici záznam textu přednášky v PDF (přednášející text píše elektronickým perem na obrazovce tabletu a tento se zobrazuje na plátně) a slajdy v PDF s TeXovaným textem. Záznamy se budou sdílet až po dané přednášce a před další přednáškou.
K získání zápočtu je potřeba aktivní účast na cvičeních (povolené jsou 2 neomluvené absence). Za omluvenou absenci se považuje výhradně absence omluvená na studijním oddělení a zavedená do informačního systému v řádném termínu (do 5 pracovních dnů od termínu konání výuky). Je to v souladu se studijním řádem, kde se v čl.9 odstavci (7) píše, že (7) Student je povinen písemně omluvit na studijním oddělení fakulty svou neúčast do 5 pracovních dnů od termínu konání výuky, jež je omlouvána.
- Enrolment Statistics (Spring 2024, recent)
- Permalink: https://is.muni.cz/course/sci/spring2024/M8986