BKM_VTAB Vybraná témata analýzy byznysových dat

Ekonomicko-správní fakulta
jaro 2025
Rozsah
tutorial 12 hodin. 6 kr. Ukončení: z.
Vyučováno kontaktně
Vyučující
Mgr. Bc. Martin Chvátal, Ph.D. (přednášející)
Ing. Mgr. Markéta Matulová, Ph.D. (přednášející)
Ing. Mgr. Michal Rychnovský, Ph.D. MSc (přednášející)
Garance
Mgr. Bc. Martin Chvátal, Ph.D.
Oddělení aplikované matematiky a informatiky – Ekonomicko-správní fakulta
Kontaktní osoba: Lenka Hráčková
Dodavatelské pracoviště: Oddělení aplikované matematiky a informatiky – Ekonomicko-správní fakulta
Předpoklady
FORMA(K)
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem předmětu je, aby se studenti vzájemně seznámili s problémy, se kterými se setkávají v komerční praxi, a jejich možným řešením. Dále je cílem rozvoj schopností týmové spolupráce při zpracování zvoleného tématu a prezentaci dosažených zjištění.
Výstupy z učení
Student bude po absolvování předmětu schopen: - provést rešerši (online) zdrojů, tak aby se rychle zorientoval v nové problematice - využít získané poznatky z oblasti datové analýzy pro řešení praktického problému a prezentovat dosažené výsledky, - spolupracovat v projektovém týmu v souladu s nastavenými pravidly spolupráce a stanovenými termíny.
Osnova
  • Studenti se budou ve dvou – tříčlenných týmech podílet na řešení vybraných témat ze zadaného seznamu: • Příklady použití matematiky a statistiky v analytické praxi • Příklady misinterpretace statistických výsledků • Napojení R na existující firemní datové zdroje • Příklad R skriptu pro řešení reálného pracovního problému • Programy a postupy pro analýzu finančních dat firmy • GDPR a právní ochrana dat • Jak zabezpečovat data na počítači, flashce i v onlinu • Časté a bolestivé chyby při práci s SQL • Indexace a optimalizace SQL skriptů • Analýza dat z Google Analytics v digitálním marketingu • Export a formátování - jak se chovat v situaci, kdy se data exportují v různých formátech a je potřeba je v rámci zpracování převést do jiného, společného formátu • "Čištění" dat - konkrétní příklady jak naložit s databázemi, které obsahují neúplné / blanketní položky • Ukázka využití zajímavých veřejných databází (ČSÚ, ARAD od ČNB) pro vlastní projekty - např. www.datapaq.cz • Jak efektivně automaticky aktualizovat veřejně dostupná data ve worksheet (např. v Excel) nebo na vlastním webu • Prezentace práce v Power BI • Online vzdělávací kurzy pro zvyšování kvalifikace v práci s daty - ukázky, tipy, hodnocení • Představení machine learning a práce s "boty" - např. využití Azure pro tvorbu vlastního chatbota na webové stránky • Fenomén "low" kódování - vytváření aplikací "laiky" pro zpracování dat v prostředí MS Power Apps • Data scraping v R, Python nebo Power automate spolu s prezentováním získaných dat • Praktická ukázka napojení na vybrané api pomocí R nebo Python a aplikace statistických metod na takto získaná data • Tvorba jednoduchého vlastního webu na wordpress a analyzování dat z jeho prohlížení • Propojení vlastního webu s shiny s nějakou zajímavou statistikou • Zajímavé balíčky R • Jak prezentovat a jak neprezentovat data • Jak vytvořit dotazník, možná úskalí, jak jej vyvěsit, kde a analýza dat z něj získaných • Aplikace data-science ve finanční oblasti • Modelování predikce dat • Automatizace rutinních úkolů v excel nebo r pomocí scriptů
Literatura
  • BAUMER, Benjamin, Daniel KAPLAN a Nicholas J. HORTON. Modern data science with R. 2nd edition. Boca Raton: CRC Press, Taylor & Francis Group, 2021, xvii, 631. ISBN 9780367745448. info
  • GEMIGNANI, Zach, Chris GEMIGNANI, Richard GALENTINO a Patrick Jude SCHUERMANN. Efektivní analýza a využití dat. Translated by Jiří Huf. 1. vydání. Brno: Computer Press, 2015, 240 stran. ISBN 9788025145715. info
  • PROVOST, Foster a Tom FAWCETT. Data science for business : what you need to know about data mining and data-analytic thinking. 1st ed. Beijing: O'Reilly, 2013, xxi, 386. ISBN 9781449361327. info
Výukové metody
Peer-to-peer learning, týmová práce při řešení praktického problému, prezentace a zpětná vazba
Metody hodnocení
Předmět je ukončen zápočtem na základě prezentace řešení zvoleného tématu a aktivní zapojení do diskuze.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá blokově.
Poznámka k četnosti výuky: 12 hodin.
Předmět je zařazen také v obdobích jaro 2023, jaro 2024.
  • Statistika zápisu (nejnovější)
  • Permalink: https://is.muni.cz/predmet/econ/jaro2025/BKM_VTAB