MA002 Matematická analýza

Fakulta informatiky
podzim 2021
Rozsah
2/2/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
Garance
prof. RNDr. Roman Šimon Hilscher, DSc.
Fakulta informatiky
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 14. 9. až Út 7. 12. Út 14:00–15:50 B204
  • Rozvrh seminárních/paralelních skupin:
MA002/01: Čt 16. 9. až Čt 9. 12. Čt 10:00–11:50 B204, P. Šepitka
Předpoklady
Základy matematické analýzy pro funkce jedné i více proměnných.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 25 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Pozornost je věnována základům z teorie systémů lineárních diferenciálních rovnic, křivkového integrálu, komplexní analýzy a variačního počtu.
Výstupy z učení
Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
Osnova
  • Systémy lineárních diferenciálních rovnic.
  • Křivkový integrál.
  • Analýza v komplexním oboru.
  • Variační počet.
Literatura
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
  • GEL'FAND, Izrail Moisejevič a Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
  • SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
  • https://www.math.muni.cz/~dosly/varpoc.pdf
Výukové metody
přednášky (2 hodiny týdně) + cvičení (2 hodiny týdně)
Metody hodnocení
Ve cvičeních kontrolní písemky, případně domácí úlohy (dohromady 30 bodů).
Zkouška: písemná (teoretická část formou testu s možností výběru + praktická část) v délce 120 minut. Maximální bodový zisk činí 100 bodů (30 bodů ze cvičení + 10 bodů z teoretické části + 60 bodů z praktické části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů a z teoretické části nejméně 4 body.
Podmínky ukončení mohou být upřesněny podle vývoje epidemiologické situace a platných omezení.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020.

MA002 Matematická analýza

Fakulta informatiky
podzim 2020
Rozsah
2/2. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
Garance
prof. RNDr. Roman Šimon Hilscher, DSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Út 16:00–17:50 B204
  • Rozvrh seminárních/paralelních skupin:
MA002/01: St 10:00–11:50 C416, P. Šepitka
Předpoklady
Základy matematické analýzy pro funkce jedné i více proměnných.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 25 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Pozornost je věnována základům z teorie systémů lineárních diferenciálních rovnic, křivkového integrálu, komplexní analýzy a variačního počtu.
Výstupy z učení
Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
Osnova
  • Systémy lineárních diferenciálních rovnic.
  • Křivkový integrál.
  • Analýza v komplexním oboru.
  • Variační počet.
Literatura
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
  • GEL'FAND, Izrail Moisejevič a Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
  • SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
  • https://www.math.muni.cz/~dosly/varpoc.pdf
Výukové metody
přednášky (2 hodiny týdně) + cvičení (2 hodiny týdně)
Metody hodnocení
Ve cvičeních kontrolní písemky, případně domácí úlohy (dohromady 30 bodů).
Zkouška: písemná (teoretická část formou testu s možností výběru + praktická část) v délce 120 minut. Maximální bodový zisk činí 100 bodů (30 bodů ze cvičení + 10 bodů z teoretické části + 60 bodů z praktické části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů a z teoretické části nejméně 4 body.
Podmínky ukončení mohou být upřesněny podle vývoje epidemiologické situace a platných omezení.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2021.

MA002 Matematická analýza

Fakulta informatiky
podzim 2019
Rozsah
2/2. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
Garance
prof. RNDr. Roman Šimon Hilscher, DSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Po 10:00–11:50 B204
  • Rozvrh seminárních/paralelních skupin:
MA002/01: Čt 14:00–15:50 A320, P. Šepitka
Předpoklady
Základy matematické analýzy pro funkce jedné i více proměnných.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 25 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Pozornost je věnována základům z teorie systémů lineárních diferenciálních rovnic, křivkového integrálu, komplexní analýzy a variačního počtu.
Výstupy z učení
Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
Osnova
  • Systémy lineárních diferenciálních rovnic.
  • Křivkový integrál.
  • Analýza v komplexním oboru.
  • Variační počet.
Literatura
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
  • GEL'FAND, Izrail Moisejevič a Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
  • SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
  • https://www.math.muni.cz/~dosly/varpoc.pdf
Výukové metody
přednášky (2 hodiny týdně) + cvičení (2 hodiny týdně)
Metody hodnocení
Zkouška: písemná (teoretická část formou testu s možností výběru + praktická část) v délce 120 minut. Maximální bodový zisk činí 100 bodů (30 bodů ze cvičení + 10 bodů z teoretické části + 60 bodů z praktické části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů a z teoretické části nejméně 4 body.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2020, podzim 2021.

MA002 Matematická analýza

Fakulta informatiky
podzim 2018
Rozsah
2/2. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
Garance
prof. RNDr. Roman Šimon Hilscher, DSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Út 10:00–11:50 B204
  • Rozvrh seminárních/paralelních skupin:
MA002/01: Čt 8:00–9:50 B204, P. Šepitka
Předpoklady
Základy matematické analýzy pro funkce jedné i více proměnných.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 23 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Pozornost je věnována základům z teorie systémů lineárních diferenciálních rovnic, křivkového integrálu, komplexní analýzy a variačního počtu. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
Osnova
  • Systémy lineárních diferenciálních rovnic.
  • Křivkový integrál.
  • Analýza v komplexním oboru.
  • Variační počet.
Literatura
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
  • GEL'FAND, Izrail Moisejevič a Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
  • SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
  • https://www.math.muni.cz/~dosly/varpoc.pdf
Výukové metody
přednášky (2 hodiny týdně) + cvičení (2 hodiny týdně)
Metody hodnocení
Zkouška: písemná (teoretická část formou testu s možností výběru + praktická část) v délce 120 minut. Maximální bodový zisk činí 100 bodů (30 bodů ze cvičení + 10 bodů z teoretické části + 60 bodů z praktické části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů a z teoretické části nejméně 4 body.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza

Fakulta informatiky
podzim 2017
Rozsah
2/2. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
Garance
prof. RNDr. Roman Šimon Hilscher, DSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Čt 14:00–15:50 A320
  • Rozvrh seminárních/paralelních skupin:
MA002/01: Čt 16:00–17:50 A320, P. Šepitka
Předpoklady
Základy matematické analýzy pro funkce jedné i více proměnných.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 23 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Pozornost je věnována základům z teorie systémů lineárních diferenciálních rovnic, křivkového integrálu, komplexní analýzy a variačního počtu. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
Osnova
  • Systémy lineárních diferenciálních rovnic.
  • Křivkový integrál.
  • Analýza v komplexním oboru.
  • Variační počet.
Literatura
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
  • GEL'FAND, Izrail Moisejevič a Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
  • SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
  • https://www.math.muni.cz/~dosly/varpoc.pdf
Výukové metody
přednášky (2 hodiny týdně) + cvičení (2 hodiny týdně)
Metody hodnocení
Zkouška: písemná (teoretická část formou testu s možností výběru + praktická část) v délce 120 minut. Maximální bodový zisk činí 100 bodů (30 bodů ze cvičení + 10 bodů z teoretické části + 60 bodů z praktické části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů a z teoretické části nejméně 4 body.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza

Fakulta informatiky
podzim 2016
Rozsah
2/2. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
Garance
prof. RNDr. Roman Šimon Hilscher, DSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Út 8:00–9:50 A320
  • Rozvrh seminárních/paralelních skupin:
MA002/01: Čt 12:00–13:50 A320, P. Šepitka
Předpoklady
Základy matematické analýzy pro funkce jedné i více proměnných.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 23 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Pozornost je věnována základům z teorie systémů lineárních diferenciálních rovnic, křivkového integrálu, komplexní analýzy a variačního počtu. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
Osnova
  • Systémy lineárních diferenciálních rovnic.
  • Křivkový integrál.
  • Analýza v komplexním oboru.
  • Variační počet.
Literatura
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
  • GEL'FAND, Izrail Moisejevič a Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
  • SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
  • https://www.math.muni.cz/~dosly/varpoc.pdf
Výukové metody
přednášky (2 hodiny týdně) + cvičení (2 hodiny týdně)
Metody hodnocení
Zkouška: písemná (teoretická část formou testu s možností výběru + praktická část) v délce 120 minut. Maximální bodový zisk činí 100 bodů (30 bodů ze cvičení + 10 bodů z teoretické části + 60 bodů z praktické části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů a z teoretické části nejméně 4 body.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza

Fakulta informatiky
podzim 2015
Rozsah
2/2. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
Garance
prof. RNDr. Roman Šimon Hilscher, DSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Út 8:00–9:50 C525
  • Rozvrh seminárních/paralelních skupin:
MA002/01: Čt 18:00–19:50 A320, P. Šepitka
Předpoklady
Základy matematické analýzy pro funkce jedné i více proměnných.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 23 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Pozornost je věnována základům z teorie systémů lineárních diferenciálních rovnic, křivkového integrálu, komplexní analýzy a variačního počtu. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
Osnova
  • Systémy lineárních diferenciálních rovnic.
  • Křivkový integrál.
  • Analýza v komplexním oboru.
  • Variační počet.
Literatura
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
  • GEL'FAND, Izrail Moisejevič a Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
  • SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
  • https://www.math.muni.cz/~dosly/varpoc.pdf
Výukové metody
přednášky (2 hodiny týdně) + cvičení (2 hodiny týdně)
Metody hodnocení
Zkouška: písemná (teoretická část formou testu s možností výběru + praktická část) v délce 120 minut. Maximální bodový zisk činí 100 bodů (30 bodů ze cvičení + 10 bodů z teoretické části + 60 bodů z praktické části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů a z teoretické části nejméně 4 body.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza

Fakulta informatiky
podzim 2014
Rozsah
2/2. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
Mgr. Milan Bačík (cvičící)
Garance
prof. RNDr. Roman Šimon Hilscher, DSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Út 14:00–15:50 B204
  • Rozvrh seminárních/paralelních skupin:
MA002/01: Pá 8:00–9:50 A320, M. Bačík
Předpoklady
Základy matematické analýzy pro funkce jedné i více proměnných.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 22 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Pozornost je věnována základům z teorie systémů lineárních diferenciálních rovnic, křivkového integrálu, komplexní analýzy a variačního počtu. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
Osnova
  • Systémy lineárních diferenciálních rovnic.
  • Křivkový integrál.
  • Analýza v komplexním oboru.
  • Variační počet.
Literatura
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
  • GEL'FAND, Izrail Moisejevič a Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
  • SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
Výukové metody
přednášky (2 hodiny týdně) + cvičení (2 hodiny týdně)
Metody hodnocení
Zkouška: písemná (teoretická část formou testu s možností výběru + praktická část) v délce 120 minut. Maximální bodový zisk činí 100 bodů (30 bodů ze cvičení + 10 bodů z teoretické části + 60 bodů z praktické části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů a z teoretické části nejméně 4 body.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza

Fakulta informatiky
podzim 2013
Rozsah
2/2. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
Mgr. Bc. Tomáš Hebelka (cvičící)
Garance
prof. RNDr. Roman Šimon Hilscher, DSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Út 10:00–11:50 G125
  • Rozvrh seminárních/paralelních skupin:
MA002/01: St 8:00–9:50 G125, T. Hebelka
Předpoklady
Základy matematické analýzy pro funkce jedné i více proměnných.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 22 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Pozornost je věnována základům z teorie systémů lineárních diferenciálních rovnic, křivkového integrálu, komplexní analýzy a variačního počtu. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
Osnova
  • Systémy lineárních diferenciálních rovnic.
  • Křivkový integrál.
  • Analýza v komplexním oboru.
  • Variační počet.
Literatura
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
  • GEL'FAND, Izrail Moisejevič a Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
  • SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
Výukové metody
přednášky (2 hodiny týdně) + cvičení (2 hodiny týdně)
Metody hodnocení
Zkouška: písemná (teoretická část formou testu s možností výběru + praktická část) v délce 120 minut. Maximální bodový zisk činí 100 bodů (30 bodů ze cvičení + 10 bodů z teoretické části + 60 bodů z praktické části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů a z teoretické části nejméně 4 body.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza III

Fakulta informatiky
podzim 2012
Rozsah
3/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
Mgr. Bc. Tomáš Hebelka (pomocník)
doc. RNDr. Michal Veselý, Ph.D. (pomocník)
RNDr. Jan Vondra, Ph.D. (náhr. zkoušející)
Garance
doc. RNDr. Bedřich Půža, CSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
Út 11:00–13:50 G124
Předpoklady
! M002 Matematická analýza III || MB001 Matematická analýza II
Uspesne absolvovani bakalářských předmětů Matematická analýza I, Matematická analýza II.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 22 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy souvicející s probíranou tématikou.
Osnova
  • Řady funkcí, stejnoměrná konvergence.
  • Řady mocninné a jejich poloměr konvergence.
  • Řady Fourierovy.
  • Nevlastní integrál, závislost na parametru.
  • Implicitní funkce
  • Křivkový integrál, Greenova věta.
  • Komplexní funkce komplexní proměnné.
  • Cauchyova věta, věta o residuích.
  • Diferenciální rovnice 1. řádu, směrová pole, počáteční podmínky.
  • Lineární diferenciální rovnice vyšších řádů, rovnice s konstantními koeficienty.
Literatura
  • NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
Výukové metody
přednášky (3 hodiny týdně); tento předmět je velmi vhodné absolvovat společně s MA019 Cvičení Matematická analýza III
Metody hodnocení
Zkouška: písemná (teoretická část formou testu + praktická část) v délce 120 minut.
Informace učitele
Je velmi doporučováno zapsat si současně předmět MA019.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza III

Fakulta informatiky
podzim 2011
Rozsah
3/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
prof. Alexander Lomtatidze, DrSc. (přednášející)
doc. Mgr. Petr Zemánek, Ph.D. (cvičící)
Garance
doc. RNDr. Bedřich Půža, CSc.
Fakulta informatiky
Rozvrh
Po 17:00–19:50 G123
Předpoklady
! M002 Matematická analýza III || MB001 Matematická analýza II
Uspesne absolvovani bakalářských předmětů Matematická analýza I, Matematická analýza II.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 22 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy souvicející s probíranou tématikou.
Osnova
  • Řady funkcí, stejnoměrná konvergence.
  • Řady mocninné a jejich poloměr konvergence.
  • Řady Fourierovy.
  • Nevlastní integrál, závislost na parametru.
  • Implicitní funkce
  • Křivkový integrál, Greenova věta.
  • Komplexní funkce komplexní proměnné.
  • Cauchyova věta, věta o residuích.
  • Diferenciální rovnice 1. řádu, směrová pole, počáteční podmínky.
  • Lineární diferenciální rovnice vyšších řádů, rovnice s konstantními koeficienty.
Literatura
  • NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
Výukové metody
přednášky
Metody hodnocení
Výuka: přednáška 3 hod. týdně. Zkouška: písemná.
Informace učitele
Písemná zkouška trvá 60 min.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza III

Fakulta informatiky
podzim 2010
Rozsah
3/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
prof. Alexander Lomtatidze, DrSc. (přednášející)
prof. RNDr. Luboš Brim, CSc. (pomocník)
Garance
doc. RNDr. Bedřich Půža, CSc.
Fakulta informatiky
Kontaktní osoba: prof. Alexander Lomtatidze, DrSc.
Rozvrh
Út 8:00–10:50 B003
Předpoklady
! M002 Matematická analýza III || MB001 Matematická analýza II
Uspesne absolvovani bakalářských předmětů Matematická analýza I, Matematická analýza II.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 26 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy souvicející s probíranou tématikou.
Osnova
  • Řady funkcí, stejnoměrná konvergence.
  • Řady mocninné a jejich poloměr konvergence.
  • Řady Fourierovy.
  • Nevlastní integrál, závislost na parametru.
  • Implicitní funkce
  • Křivkový integrál, Greenova věta.
  • Komplexní funkce komplexní proměnné.
  • Cauchyova věta, věta o residuích.
  • Diferenciální rovnice 1. řádu, směrová pole, počáteční podmínky.
  • Lineární diferenciální rovnice vyšších řádů, rovnice s konstantními koeficienty.
Literatura
  • NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
Výukové metody
přednášky
Metody hodnocení
Výuka: přednáška 3 hod. týdně. Zkouška: písemná.
Informace učitele
Písemná zkouška trvá 60 min.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza III

Fakulta informatiky
podzim 2009
Rozsah
3/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
prof. Alexander Lomtatidze, DrSc. (přednášející)
prof. RNDr. Luboš Brim, CSc. (pomocník)
Garance
doc. RNDr. Bedřich Půža, CSc.
Fakulta informatiky
Kontaktní osoba: prof. Alexander Lomtatidze, DrSc.
Rozvrh
Po 9:00–11:50 B011
Předpoklady
! M002 Matematická analýza III || MB001 Matematická analýza II
Uspesne absolvovani bakalářských předmětů Matematická analýza I, Matematická analýza II.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 26 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy souvicející s probíranou tématikou.
Osnova
  • Řady funkcí, stejnoměrná konvergence.
  • Řady mocninné a jejich poloměr konvergence.
  • Řady Fourierovy.
  • Nevlastní integrál, závislost na parametru.
  • Implicitní funkce
  • Křivkový integrál, Greenova věta.
  • Komplexní funkce komplexní proměnné.
  • Cauchyova věta, věta o residuích.
  • Diferenciální rovnice 1. řádu, směrová pole, počáteční podmínky.
  • Lineární diferenciální rovnice vyšších řádů, rovnice s konstantními koeficienty.
Literatura
  • NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
Výukové metody
přednášky
Metody hodnocení
Výuka: přednáška 3 hod. týdně. Zkouška: písemná.
Informace učitele
Písemná zkouška trvá 60 min.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza III

Fakulta informatiky
podzim 2008
Rozsah
3/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
prof. Alexander Lomtatidze, DrSc. (přednášející)
prof. RNDr. Luboš Brim, CSc. (pomocník)
Garance
doc. RNDr. Bedřich Půža, CSc.
Fakulta informatiky
Kontaktní osoba: prof. Alexander Lomtatidze, DrSc.
Rozvrh
Po 9:00–11:50 B011
Předpoklady
! M002 Matematická analýza III || MB001 Matematická analýza II
Uspesne absolvovani bakalářských předmětů Matematická analýza I, Matematická analýza II.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 19 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic.
Osnova
  • Řady funkcí, stejnoměrná konvergence.
  • Řady mocninné a jejich poloměr konvergence.
  • Řady Fourierovy.
  • Nevlastní integrál, závislost na parametru.
  • Implicitní funkce
  • Křivkový integrál, Greenova věta.
  • Komplexní funkce komplexní proměnné.
  • Cauchyova věta, věta o residuích.
  • Diferenciální rovnice 1. řádu, směrová pole, počáteční podmínky.
  • Lineární diferenciální rovnice vyšších řádů, rovnice s konstantními koeficienty.
Literatura
  • NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
Metody hodnocení
Písemná zkouška, zamereni prakticke a teoreticke, reseni praktickych prikladu a znalost definici a zakladnich vet a souvislosti mezi nimi. Zadne povolene materialy.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza III

Fakulta informatiky
podzim 2007
Rozsah
3/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
prof. Alexander Lomtatidze, DrSc. (přednášející)
prof. RNDr. Luboš Brim, CSc. (pomocník)
Garance
prof. RNDr. Miroslav Bartušek, DrSc.
Fakulta informatiky
Kontaktní osoba: prof. Alexander Lomtatidze, DrSc.
Rozvrh
Po 16:00–18:50 B011
Předpoklady
! M002 Matematická analýza III || MB001 Matematická analýza II
Uspesne absolvovani bakalářských předmětů Matematická analýza I, Matematická analýza II.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 19 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic.
Osnova
  • Řady funkcí, stejnoměrná konvergence.
  • Řady mocninné a jejich poloměr konvergence.
  • Řady Fourierovy.
  • Nevlastní integrál, závislost na parametru.
  • Implicitní funkce
  • Křivkový integrál, Greenova věta.
  • Komplexní funkce komplexní proměnné.
  • Cauchyova věta, věta o residuích.
  • Diferenciální rovnice 1. řádu, směrová pole, počáteční podmínky.
  • Lineární diferenciální rovnice vyšších řádů, rovnice s konstantními koeficienty.
Literatura
  • NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
Metody hodnocení
Písemná zkouška, zamereni prakticke a teoreticke, reseni praktickych prikladu a znalost definici a zakladnich vet a souvislosti mezi nimi. Zadne povolene materialy.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza III

Fakulta informatiky
podzim 2006
Rozsah
3/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
prof. RNDr. Miroslav Bartušek, DrSc. (přednášející)
prof. RNDr. Luboš Brim, CSc. (pomocník)
Garance
prof. RNDr. Miroslav Bartušek, DrSc.
Fakulta informatiky
Kontaktní osoba: prof. RNDr. Miroslav Bartušek, DrSc.
Rozvrh
Po 9:00–11:50 A107
Předpoklady
! M002 Matematická analýza III || MB001 Matematická analýza II || M001 Matematická analýza II
Uspesne absolvovani bakalářských předmětů Matematická analýza I, Matematická analýza II.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic.
Osnova
  • Řady funkcí, stejnoměrná konvergence.
  • Řady mocninné a jejich poloměr konvergence.
  • Řady Fourierovy.
  • Nevlastní integrál, závislost na parametru.
  • Implicitní funkce
  • Křivkový integrál, Greenova věta.
  • Komplexní funkce komplexní proměnné.
  • Cauchyova věta, věta o residuích.
  • Diferenciální rovnice 1. řádu, směrová pole, počáteční podmínky.
  • Lineární diferenciální rovnice vyšších řádů, rovnice s konstantními koeficienty.
Literatura
  • NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
Metody hodnocení
Písemná zkouška, zamereni prakticke a teoreticke, reseni praktickych prikladu a znalost definici a zakladnich vet a souvislosti mezi nimi. Zadne povolene materialy.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza III

Fakulta informatiky
podzim 2005
Rozsah
3/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
prof. RNDr. Miroslav Bartušek, DrSc. (přednášející)
prof. RNDr. Luboš Brim, CSc. (pomocník)
Garance
prof. RNDr. Miroslav Bartušek, DrSc.
Fakulta informatiky
Kontaktní osoba: prof. RNDr. Miroslav Bartušek, DrSc.
Rozvrh
Po 9:00–11:50 A107
Předpoklady
! M002 Matematická analýza III || MB001 Matematická analýza II || M001 Matematická analýza II
Uspesne absolvovani bakalářských předmětů Matematická analýza I, Matematická analýza II.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic.
Osnova
  • Řady funkcí, stejnoměrná konvergence.
  • Řady mocninné a jejich poloměr konvergence.
  • Řady Fourierovy.
  • Nevlastní integrál, závislost na parametru.
  • Implicitní funkce
  • Křivkový integrál, Greenova věta.
  • Komplexní funkce komplexní proměnné.
  • Cauchyova věta, věta o residuích.
  • Diferenciální rovnice 1. řádu, směrová pole, počáteční podmínky.
  • Lineární diferenciální rovnice vyšších řádů, rovnice s konstantními koeficienty.
Literatura
  • NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
Metody hodnocení
Písemná zkouška, zamereni prakticke a teoreticke, reseni praktickych prikladu a znalost definici a zakladnich vet a souvislosti mezi nimi. Zadne povolene materialy.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza III

Fakulta informatiky
podzim 2004
Rozsah
3/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
prof. RNDr. Miroslav Bartušek, DrSc. (přednášející)
prof. RNDr. Luboš Brim, CSc. (pomocník)
Garance
doc. RNDr. Bedřich Půža, CSc.
Fakulta informatiky
Kontaktní osoba: prof. RNDr. Miroslav Bartušek, DrSc.
Rozvrh
St 8:00–10:50 B003
Předpoklady
M002 Matematická analýza III || MB001 Matematická analýza II || M001 Matematická analýza II
Uspesne absolvovani bakalářských předmětů Matematická analýza I, Matematická analýza II.
Omezení zápisu do předmětu
Předmět je určen pouze studentům mateřských oborů.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic.
Osnova
  • Řady funkcí, stejnoměrná konvergence.
  • Řady mocninné a jejich poloměr konvergence.
  • Řady Fourierovy.
  • Nevlastní integrál, závislost na parametru.
  • Implicitní funkce
  • Křivkový integrál, Greenova věta.
  • Komplexní funkce komplexní proměnné.
  • Cauchyova věta, věta o residuích.
  • Diferenciální rovnice 1. řádu, směrová pole, počáteční podmínky.
  • Lineární diferenciální rovnice vyšších řádů, rovnice s konstantními koeficienty.
Literatura
  • NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
Metody hodnocení
Písemná zkouška, zamereni prakticke a teoreticke, reseni praktickych prikladu a znalost definici a zakladnich vet a souvislosti mezi nimi. Zadne povolene materialy.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza III

Fakulta informatiky
podzim 2003
Rozsah
3/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
prof. RNDr. Miroslav Bartušek, DrSc. (přednášející)
Garance
doc. RNDr. Bedřich Půža, CSc.
Fakulta informatiky
Kontaktní osoba: prof. RNDr. Miroslav Bartušek, DrSc.
Rozvrh
Čt 15:00–17:50 B011
Předpoklady
M002 Matematická analýza III || MB001 Matematická analýza II || M001 Matematická analýza II
Znalosti v rozsahu bakalářských předmětů Matematická analýza I, Matematická analýza II.
Omezení zápisu do předmětu
Předmět je určen pouze studentům mateřských oborů.
Mateřské obory/plány
předmět má 6 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic.
Osnova
  • Řady funkcí, stejnoměrná konvergence.
  • Řady mocninné a jejich poloměr konvergence.
  • Řady Fourierovy.
  • Nevlastní integrál, závislost na parametru.
  • Implicitní funkce
  • Křivkový integrál, Greenova věta.
  • Komplexní funkce komplexní proměnné.
  • Cauchyova věta, věta o residuích.
  • Diferenciální rovnice 1. řádu, směrová pole, počáteční podmínky.
  • Lineární diferenciální rovnice vyšších řádů, rovnice s konstantními koeficienty.
Literatura
  • NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
Metody hodnocení
Písemná zkouška, zamereni prakticke a teoreticke, reseni praktickych prikladu a znalost definici a zakladnich vet a souvislosti mezi nimi. Zadne povolene materialy.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza III

Fakulta informatiky
podzim 2002
Rozsah
3/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
prof. RNDr. Miroslav Bartušek, DrSc. (přednášející)
Garance
doc. RNDr. Bedřich Půža, CSc.
Fakulta informatiky
Kontaktní osoba: prof. RNDr. Miroslav Bartušek, DrSc.
Rozvrh
Čt 7:00–9:50 A107
Předpoklady
! M002 Matematická analýza III
Znalosti v rozsahu bakalářských předmětů Matematická analýza I, Matematická analýza II.
Omezení zápisu do předmětu
Předmět je určen pouze studentům mateřských oborů.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Jsou probírány posloupnosti a řady funkcí a jejich aplikace. Dále je pozornost věnována křivkovému integrálu, základům komplexní analýzy a elementárním metodám řešení diferenciálních rovnic.
Osnova
  • Řady funkcí, stejnoměrná konvergence.
  • Řady mocninné a jejich poloměr konvergence.
  • Řady Fourierovy.
  • Nevlastní integrál, závislost na parametru.
  • Implicitní funkce
  • Křivkový integrál, Greenova věta.
  • Komplexní funkce komplexní proměnné.
  • Cauchyova věta, věta o residuích.
  • Diferenciální rovnice 1. řádu, směrová pole, počáteční podmínky.
  • Lineární diferenciální rovnice vyšších řádů, rovnice s konstantními koeficienty.
Literatura
  • NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
Metody hodnocení
Písemná zkouška.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza

Fakulta informatiky
podzim 2023

Předmět se v období podzim 2023 nevypisuje.

Rozsah
2/2/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
Garance
prof. RNDr. Roman Šimon Hilscher, DSc.
Fakulta informatiky
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
Základy matematické analýzy pro funkce jedné i více proměnných.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 25 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Pozornost je věnována základům z teorie systémů lineárních diferenciálních rovnic, křivkového integrálu, komplexní analýzy a variačního počtu.
Výstupy z učení
Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
Osnova
  • Systémy lineárních diferenciálních rovnic.
  • Křivkový integrál.
  • Analýza v komplexním oboru.
  • Variační počet.
Literatura
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
  • GEL'FAND, Izrail Moisejevič a Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
  • SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
  • https://www.math.muni.cz/~dosly/varpoc.pdf
Výukové metody
přednášky (2 hodiny týdně) + cvičení (2 hodiny týdně)
Metody hodnocení
Ve cvičeních kontrolní písemky, případně domácí úlohy (dohromady 30 bodů).
Zkouška: písemná (teoretická část formou testu s možností výběru + praktická část) v délce 120 minut. Maximální bodový zisk činí 100 bodů (30 bodů ze cvičení + 10 bodů z teoretické části + 60 bodů z praktické části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů a z teoretické části nejméně 4 body.
Podmínky ukončení mohou být upřesněny podle vývoje epidemiologické situace a platných omezení.
Další komentáře
Předmět již není vypisován.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.

MA002 Matematická analýza

Fakulta informatiky
podzim 2022

Předmět se v období podzim 2022 nevypisuje.

Rozsah
2/2/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
Garance
prof. RNDr. Roman Šimon Hilscher, DSc.
Fakulta informatiky
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
Základy matematické analýzy pro funkce jedné i více proměnných.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 25 mateřských oborů, zobrazit
Cíle předmětu
Magisterský kurz, který prezentuje nepovinnou část matematické analýzy. Pozornost je věnována základům z teorie systémů lineárních diferenciálních rovnic, křivkového integrálu, komplexní analýzy a variačního počtu.
Výstupy z učení
Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
Osnova
  • Systémy lineárních diferenciálních rovnic.
  • Křivkový integrál.
  • Analýza v komplexním oboru.
  • Variační počet.
Literatura
  • KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita Brno, 1995, 207 s. ISBN 80-210-1130-0. info
  • https://www.math.muni.cz/~dosly/krivkovy_integral.pdf
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita, 2006, iv, 202. ISBN 8021040459. info
  • GEL'FAND, Izrail Moisejevič a Sergej Vasil'jevič FOMIN. Calculus of variations. Edited by Richard A. Silverman. Mineola, N. Y.: Dover Publications, 2000, vii, 232 s. ISBN 0-486-41448-5. info
  • SAGAN, Hans. Introduction to the calculus of variations. New York, N.Y.: Dover Publications, 1969, xvi, 449. ISBN 0486673669. info
  • https://www.math.muni.cz/~dosly/varpoc.pdf
Výukové metody
přednášky (2 hodiny týdně) + cvičení (2 hodiny týdně)
Metody hodnocení
Ve cvičeních kontrolní písemky, případně domácí úlohy (dohromady 30 bodů).
Zkouška: písemná (teoretická část formou testu s možností výběru + praktická část) v délce 120 minut. Maximální bodový zisk činí 100 bodů (30 bodů ze cvičení + 10 bodů z teoretické části + 60 bodů z praktické části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů a z teoretické části nejméně 4 body.
Podmínky ukončení mohou být upřesněny podle vývoje epidemiologické situace a platných omezení.
Další komentáře
Předmět již není vypisován.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021.