FI:I081 Lambda calculus - Course Information
I081 Lambda calculus
Faculty of InformaticsSpring 2001
- Extent and Intensity
- 2/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- prof. RNDr. Jiří Zlatuška, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Jiří Zlatuška, CSc. - Timetable
- Mon 9:00–10:50 B410
- Prerequisites (in Czech)
- ( I007 Computability || I008 Computational Logic )&& M009 Algebra II
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Informatics (programme FI, M-IN)
- Mathematical Informatics (programme FI, D-IN)
- General Problems of Mathematics and Informatics (programme FI, D-IN)
- Course objectives
- Pure lambda-calculus: lambda-terms, structure of terms,
equational theories.
Reductions: one-way transformations, general reductions, beta-reduction.
Lambda-calculus and computations: coding, recursive definitions, lambda-computability, fixed-point combinators, undecidable properties.
Modification of the theory: combinatory logic, extensionality, eta-reduction.
Typed lambda-calculus: types and terms, normal forms, set models, strong normalization, types as formulae.
Domain models: complete partial orders, domains, least fixed points, partiality.
Domain construction: compound domains, recursive domain construction, limit domains. - Syllabus
- Pure lambda-calculus: lambda-terms, structure of terms, equational theories.
- Reductions: one-way transformations, general reductions, beta-reduction.
- Lambda-calculus and computations: coding, recursive definitions, lambda-computability, fixed-point combinators, undecidable properties.
- Modification of the theory: combinatory logic, extensionality, eta-reduction.
- Typed lambda-calculus: types and terms, normal forms, set models, strong normalization, types as formulae.
- Domain models: complete partial orders, domains, least fixed points, partiality.
- Domain construction: compound domains, recursive domain construction, limit domains.
- Literature
- ZLATUŠKA, Jiří. Lambda-kalkul. 1. vyd. Brno: Masarykova univerzita, 1993, 264 s. ISBN 8021008261. info
- BARENDREGT, H. P. Lambda calculus : its syntax and semantics. Rev. ed. Amsterdam: Elsevier, 1998, xv, 621 s. ISBN 0-444-86748-1. info
- HINDLEY, J. Roger and J. P. SELDIN. An Introduction to Combinators and the (lambda)-calculus. Cambridge: Cambridge University Press, 1986, 360 s. ISBN 0521318394. info
- AMADIO, Roberto M. and Pierre-Louis CURIEN. Domains and Lambda calculi. Cambridge: Cambridge University Press, 1998, xvi, 484. ISBN 0521622778. info
- Assessment methods (in Czech)
- přednášky a samostané studium dle literatury zadané přednášejícím
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught once in two years.
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/fi/spring2001/I081