FI:IB031 Intro to Machine Learning - Course Information
IB031 Introduction to Machine Learning
Faculty of InformaticsSpring 2015
- Extent and Intensity
- 2/0/1. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Tomáš Brázdil, Ph.D. (lecturer)
doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
RNDr. Karel Vaculík, Ph.D. (assistant) - Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Tue 10:00–11:50 C511
- Prerequisites (in Czech)
- Doporučeno: znalosti v rozsahu kursů MB102 a MB103.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives (in Czech)
- Student se bude po absolvování předmětu schopen samostatně orientovat v základních metodách a přístupech z oblasti strojového učení. Bude mít základní představu o fundamentálních teoretických modelech a jejich klíčových praktických aplikacích. Bude mít přehled o souvislostech strojového učení s dalšími oblastmi informatiky a matematiky, zejména s matematickou statistikou, logikou, umělou inteligencí a optimalizací. Bude umět implementovat aplikaci metod strojového učení.
- Syllabus (in Czech)
- Základy strojového učení: klasifikace a regrese, shluková analýza, učení s učitelem a bez učitele, ilustrační příklady
- Rozhodovací stromy: učení rozhodovacích stromů, učení pravidel
- Logika a strojové učení: specializace, generalizace, logický důsledek
- Ověřování výsledku učení: učící a testovací množina, přeučení, krížová validace, matice zmatenosti, učící krivka, ROC křivka; sampling, normalizace
- Pravděpodobnostní model: Bayesovo pravidlo, MAP, MLE, naivní Bayes; jemný úvod do Bayesovských sítí
- Lineární regrese (klasifikace), metoda nejmenších čtverců, souvislost s MLE, regresní stromy
- Kernelové metody: SVM, kernelová transformace, kernelový trik
- Neuronové sítě: vícevrstvá síť, zpětná propagace, nelineární regrese, bias vs. variance, regularizace
- Líné učení: metoda k nejbližších sousedů. Shluková analýza: metoda k-středů, hierarchické shlukování, EM
- Praktické strojové učení. Předzpracování dat: výběr atributů, konstrukce nových atributů, metody vzorkování. Ensemble methods. Bagging. Boosting. Nástroje pro strojové učení. Weka
- Ukázka pokročilejších metod strojového učení: Induktivní logické programování, hluboké učení.
- Literature
- recommended literature
- Simon Rogers, Mark Girolami. A First Course in Machine Learning . Chapman and Hall, 2011.
- BERKA, Petr. Dobývání znalostí z databází. Vyd. 1. Praha: Academia, 2003, 366 s. ISBN 8020010629. info
- Bookmarks
- https://is.muni.cz/ln/tag/FI:IB031!
- Assessment methods
- Intrasemestral exam, project, final exam.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2015, recent)
- Permalink: https://is.muni.cz/course/fi/spring2015/IB031