FI:PA190 Digital Signal Processing - Course Information
PA190 Digital Signal Processing
Faculty of InformaticsSpring 2016
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus 2 credits for an exam). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- prof. Ing. Jaroslav Čechák, CSc. (lecturer), prof. Ing. Václav Přenosil, CSc. (deputy)
Ahmad Abbadi, Ph.D. (lecturer)
prof. Ing. Václav Přenosil, CSc. (lecturer) - Guaranteed by
- doc. RNDr. Aleš Horák, Ph.D.
Department of Machine Learning and Data Processing – Faculty of Informatics
Contact Person: prof. Ing. Václav Přenosil, CSc.
Supplier department: Department of Machine Learning and Data Processing – Faculty of Informatics - Timetable
- Mon 10:00–11:50 A415
- Prerequisites
- PA174 or at least PB170 is necessary for study this course.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 20 student(s).
Current registration and enrolment status: enrolled: 0/20, only registered: 0/20, only registered with preference (fields directly associated with the programme): 0/20 - fields of study / plans the course is directly associated with
- Embedded Systems (eng.) (programme FI, N-IN)
- Embedded Systems (programme FI, N-IN)
- Course objectives
- To introduce the fundamentals of digital signal processing and related applications. This course will cover linear system analysis, z-transform, discrete Fourier transform (DFT) and its applications, FFT algorithms, digital filter (FIR and IIR) design and multi-rate signal processing.
- Syllabus
- 1) An Introduction to digital signal processing (DSP), signals and their types
- 2) Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC)
- 3) Amplitude quantization errors for rounding and truncation, statistical parameters of the quantization errors
- 4) Principal characteristics of a signal, mean values, power, energy, autocorrelation, cross-correlation
- 5) Spectrum of a signal, time sampling and amplitude quantization of a signal
- 6) Digital filters, digital filters with finite impulse response (FIR) and infinite impulse response (IIR)
- 7) Discrete Fourier Transform - DFT, Fast Fourier Transform - FFT, Parametric and Nonparametric Spectral Estimation in Use
- 8) Direct Frequency Synthesis - DDS
- 9) RF telemetric modules for data transmission
- 10) Software Defined Radio principles
- 11) Radio Frequency Identification RFID principles
- 12) Radar principles, radar signal processing
- 13) Using DSP in audio and telemetric application
- 14) Introduction of the MATLAB Signal Processing Toolbox
- Literature
- recommended literature
- Sanjit K. Mitra, "Digital Signal Processing: A Computer-Based Approach", second edition, McGraw-Hill.
- John G. Proakis, Dimitris K Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", third edition, Prentice Hall.
- Teaching methods
- During the semester, students are required to do tasks involving the use of Matlab software package. The course concludes with a final test.
- Assessment methods
- Final examination consists of 3 parts:
1) defense of the project - implementation of the design from laboratory lessons and discussion about protocol,
2) written test - logical algebra, design of the digital circuits and analysis of the digital circuits,
3) oral exam - theoretical tools for design of the digital circuits. - Language of instruction
- English
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2016, recent)
- Permalink: https://is.muni.cz/course/fi/spring2016/PA190