FI:IV126 Umělá inteligence II - Informace o předmětu
IV126 Umělá inteligence II
Fakulta informatikyjaro 2017
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Hana Rudová, Ph.D. (přednášející)
- Garance
- doc. RNDr. Eva Hladká, Ph.D.
Katedra počítačových systémů a komunikací – Fakulta informatiky
Dodavatelské pracoviště: Katedra počítačových systémů a komunikací – Fakulta informatiky - Rozvrh
- Po 14:00–15:50 C511
- Předpoklady
- Předmět volně navazuje na PB016 Umělá inteligence I,
absolvování PB016 není podmínkou pro absolvování předmětu.
Je předpokládana znalost pravděpodobnosti na úrovni MB103 Spojité modely a statistika. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Umělá inteligence a zpracování přirozeného jazyka (program FI, B-IN)
- Umělá inteligence a zpracování přirozeného jazyka (program FI, N-IN)
- Cíle předmětu
- Cílem předmětu je doplnění ucelených úvodních znalostí z umělé inteligence v návaznosti na přednášku PB016 Umělá inteligence I. Předmět je koncipován na základě klasické knihy Russela & Norviga Artificial intelligence: A modern approach (viz aima.cs.berkeley.edu) a představuje znalosti z oblastí lokálního prohledávání, plánování, práce s neurčitostí a z robotiky.
Absolvent bude znát různé typy základních i pokročilých algoritmů lokálního prohledávání a bude je umět použít pro řešení praktických příkladů.
Absolvent získá základní znalosti o řešení plánovacích problémů jako posloupností akcí provedených pro dosažení zadaného cíle.
Absolvent získá přehled pro práci s neurčitými a nejasnými informacemi v zadaných problémech a naučí se používat základní postupy pro zahrnutí neurčitosti do řešení problému.
Absolvent bude znát základní pojmy z oblasti robotiky a vytvoří si představu o vnímání robota, jeho lokalizaci a plánování jeho pohybu. - Osnova
- Lokální prohledávání a metaheuristiky: Heuristiky s jedním řešením, principy a koncepty, algoritmy pokročilého lokálního prohledávání. Heuristiky s populací řešení, evoluční algoritmy, algoritmy založené na inteligenci hejna. Multi-kriteriální přístupy, Paretovo optimum.
- Plánování: Reprezentace plánovacího problému. Plánování se stavovým prostorem, dopředné a zpětné plánování, STRIPS operátory. Plánování s prostorem plánů, částečné plány.
- Práce s neurčitostí: Bayesovské sítě, exaktní a aproximační odvozování. Čas a neurčitost, Markovské procesy. Teorie užitku, rozhodovací sítě, rozhodování v čase, Markovské rozhodovací procesy.
- Robotika: Roboti, sensory a efektory. Vnímání robota, lokalizace a mapování. Plánování pohybu robota, plánování s neurčitostí.
- Literatura
- RUSSELL, Stuart a NORVIG, Peter. Artificial intelligence : a modern approach (third edition). Prentice Hall, 2010.
- TALBI, El-Ghazali. Metaheuristics: From Design to Implementation. Wiley, 2009.
- GHALLAB, Malik, Dana NAU a Paolo TRAVERSO. Automated Planning: Theory & Practice. Morgan Kaufmann, 2004. info
- Výukové metody
- Standardní přednáška bez cvičení, dva domácí úkoly v průběhu semestru. Přednášky zahrnují příklady na procvičení.
- Metody hodnocení
- Hodnocení předmětu je realizováné na základě závěrečné písemné práce (80 bodů) a řešení praktických příkladů za domácí úkoly (20 bodů celkem za 2 úkoly). Pro úspěšné absolvování předmětu je nutné získat alespoň 8 bodů za domací úkoly. Hodnocení předmětu je následující A 100-90, B 89-80, C 79-70, D 69-60, E 59-50.
- Informace učitele
- http://www.fi.muni.cz/~hanka/ai
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Statistika zápisu (jaro 2017, nejnovější)
- Permalink: https://is.muni.cz/predmet/fi/jaro2017/IV126