FI:MB143 Des. and anal. of experiments - Course Information
MB143 Design and analysis of statistical experiments
Faculty of InformaticsSpring 2021
- Extent and Intensity
- 2/2/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Andrea Kraus, M.Sc., Ph.D. (lecturer)
prof. RNDr. Jan Slovák, DrSc. (assistant) - Guaranteed by
- prof. RNDr. Jan Slovák, DrSc.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 14:00–15:50 Virtuální místnost
- Timetable of Seminar Groups:
MB143/02: Mon 14:00–15:50 Virtuální místnost, A. Kraus
MB143/03: Tue 14:00–15:50 Virtuální místnost, A. Kraus - Prerequisites (in Czech)
- MB141 Linear alg. and discrete math || MB142 Applied math analysis || MB101 Mathematics I || MB201 Linear models B || MB102 Calculus || MB202 Calculus B
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 37 fields of study the course is directly associated with, display
- Course objectives
- The course presents principles and methods of statistical analysis, and explains what types of data are suitable for answering questions of interest.
- Learning outcomes
- After the course the students:
- are able to formulate questions of interest in terms of statistical inference (parameter estimation or hypothesis test within a suitable model);
- are able to choose a suitable model for basic types of data, choose a suitable method of inference to answer most common questions, implement the method in the statistical software R, and correctly interpret the results;
- are able to judge which questions and with what accuracy/certainty can be answered based on available data, or suggest what data should be collected in order to answer given questions with a desired level of accuracy/certainty. - Syllabus
- Basic principles of Probability.
- Random variables, their characteristics and mutual relationships.
- Properties of functions of random variables.
- Data as realisations of random variables.
- Descriptive statistics and the choice of a suitable model.
- Point and interval estimation: the framework and most common methods.
- Hypotheses testing: the framework and most common methods.
- Linear regression, Analysis of variance, Analysis of covariance.
- Methods of data collection, their purpose, scope and limitations.
- Design of experiment.
- Literature
- recommended literature
- ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika [Zvára, 2001]. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 80-85863-76-6. info
- ANDĚL, J. Základy matematické statistiky. Praha: MFF UK, 2005. info
- ANDĚL, Jiří. Statistické metody. 1. vyd. Praha: Matfyzpress, 1993, 246 s. info
- MILLIKEN, George A. and Dallas E. JOHNSON. Analysis of messy data. Second edition. Boca Raton: CRC Press, 2009, xiii, 674. ISBN 9781584883340. info
- not specified
- FORBELSKÁ, Marie and Jan KOLÁČEK. Pravděpodobnost a statistika I. 1. vyd. Brno: Masarykova univerzita, 2013. Elportál. ISBN 978-80-210-6710-3. url info
- FORBELSKÁ, Marie and Jan KOLÁČEK. Pravděpodobnost a statistika II. 1. vyd. Brno: Masarykova univerzita, 2013. Elportál. ISBN 978-80-210-6711-0. url info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. (Probability Theory and Mathematical Statistics. Collection of Tasks.). 3rd ed. Brno: Masarykova univerzita, 2004, 127 pp. ISBN 80-210-3313-4. info
- BUDÍKOVÁ, Marie, Maria KRÁLOVÁ and Bohumil MAROŠ. Průvodce základními statistickými metodami (Guide to basic statistical methods). vydání první. Praha: Grada Publishing, a.s., 2010, 272 pp. edice Expert. ISBN 978-80-247-3243-5. URL info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Popisná statistika (Descriptive Statistics). 3., doplněné vyd. Brno: Masarykova univerzita, 1998, 52 pp. ISBN 80-210-1831-3. info
- Teaching methods
- Lectures: 2 hours a week by means of videoconference via MS Teams at the time given by the timetable; focused on explanation of terms, principles and methods.
Exercise sessions: 2 hours a week by means of videoconference via MS Teams at the time given by the timetable; focused on deeper understanding of the principles and methods, on their application to data using the statistical software R, and on interpretation of the obtained results. - Assessment methods
- During the semester: teamwork on two projects, presentation of results during the exercise sessions.
After the semester: a written exam (online form). - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- https://is.muni.cz/auth/el/fi/jaro2021/MB143/index.qwarp
https://is.muni.cz/auth/el/fi/jaro2021/MB143/index-myLOLl.qwarp
- Enrolment Statistics (Spring 2021, recent)
- Permalink: https://is.muni.cz/course/fi/spring2021/MB143