MB153 Statistika I

Fakulta informatiky
jaro 2025
Rozsah
2/2/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučováno kontaktně
Vyučující
doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Mgr. Michaela Marčeková (cvičící)
Mgr. Jakub Záthurecký, Ph.D. (cvičící)
Garance
doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
( MB151 Lineární modely || MB152 Dif. a integrální počet || PřF:M1110 Lineární algebra a geom. I || PřF:M1100 Matematická analýza I ) && !NOW( MB143 Návrh a analýza experimentů )
Předpokládá se znalost diferenciálního a integrálního počtu jedné a více proměnných, základní znalosti z lineární algebry. MB143 je odlehčená varianta předmětu MB153.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Úvodní kurz seznamuje studenty s popisnou statistkou, s teorií pravděpodobnosti, náhodnými veličinami a jejich rozložením pravděpodobností, s testováním hypotéz.
Výstupy z učení
Po absolvování kurzu student: zvládne pomocí statistického software R základní statistické zpracování datového souboru ve formě tabulek, grafů a číselných charakteristik; porozumí základním pravděpodobnostním pojmům; umí řešit praktické pravděpodobnostní úlohy, které vycházejí z vyložené teorie (v některých případech s využitím statistického software); umí pomocí statistického software generovat realizace vybraných typů náhodných veličin, ovládá základy statistického testování hypotéz, včetně provedení testů v statistickém software a interpretace výsledků testování.
Osnova
  • Úvod do teorie pravděpodobnosti.
  • Náhodné veličiny, náhodné vektory a jejich distribuční funkce.
  • Diskrétní a spojité náhodné veličiny, jejich funkcionální charakteristiky a příklady různých typů rozložení. Simultánní a marginální rozložení.
  • Stochasticky nezávislé náhodné veličiny, posloupnost nezávislých opakovaných pokusů, generátory realizací některých typů náhodných veličin.
  • Kvantil, střední hodnota, rozptyl, kovariance, koeficient korelace s odpovídajícími vlastnostmi a výpočetními pravidly.
  • Zákon velkých čísel a centrální limitní věta.
  • Tabulkové a grafické zpracování datových souborů, průzkumová analýza dat.
  • Náhodný výběr, bodové a intervalové odhady parametrů, metoda maximální věrohodnosti.
  • Úvod do testování hypotéz. Testování v R.
  • Regresní analýza v R.
Literatura
    doporučená literatura
  • FORBELSKÁ, Marie a Jan KOLÁČEK. Pravděpodobnost a statistika I. 1. vyd. Brno: Masarykova univerzita, 2013. Elportál. ISBN 978-80-210-6710-3. url info
  • FORBELSKÁ, Marie a Jan KOLÁČEK. Pravděpodobnost a statistika II. 1. vyd. Brno: Masarykova univerzita, 2013. Elportál. ISBN 978-80-210-6711-0. url info
    neurčeno
  • BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ a Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. 3. vyd. Brno: Masarykova univerzita, 2004, 127 s. ISBN 80-210-3313-4. info
  • BUDÍKOVÁ, Marie, Maria KRÁLOVÁ a Bohumil MAROŠ. Průvodce základními statistickými metodami. vydání první. Praha: Grada Publishing, a.s., 2010, 272 s. edice Expert. ISBN 978-80-247-3243-5. URL info
  • ANDĚL, Jiří. Statistické metody. 1. vyd. Praha: Matfyzpress, 1993, 246 s. info
  • CASELLA, George a Roger L. BERGER. Statistical inference. 2nd ed. Pacific Grove, Calif.: Duxbury, 2002, xxviii, 66. ISBN 0534243126. info
  • HOGG, Robert V. a Allen T. CRAIG. Introduction to mathematical statistics. 3rd ed. New York: Macmillan Publishing, 1970, x, 415. info
Výukové metody
Přednášky, cvičení
Metody hodnocení
Výuka probíhá každý týden v rozsahu 2 hodiny přednášek, 2 hodiny cvičení. Aktívní práce na cvičeních. Vyplňování odpovědníků v průběhu semestru. Série praktických úloh v R ve cvičení. Zkouška je písemná: teorie a příklady. Hodnocení bude probíhat ve dvou fázích: 1.Vyplňování Odpovědníků v ISu v průběhu semestru - 40% bodů 2.Závěrečný test - 60% bodů K úspěšnému zvládnutí je potřeba získat alespoň 50% bodů.
Navazující předměty
Informace učitele
Cvičení budou sestávat z písemného řešení příkladů a také se bude pracovat na počítačích ve statistickém softwaru (jazyce) R, který je plně dostupný zdarma.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2021, jaro 2022, jaro 2023, jaro 2024.
  • Statistika zápisu (nejnovější)
  • Permalink: https://is.muni.cz/predmet/fi/jaro2025/MB153