M003 Lineární algebra I

Fakulta informatiky
podzim 1998
Rozsah
2/2. 4 kr. Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
Milan Sekanina (přednášející)
Garance
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Osnova
  • Skaláry, vektory a matice: Vlastnosti známých číselných oborů, pole a vektorové prostory, příklady vektorových prostorů, $R^n$ a v $C^n$, zápis systémů lineárních rovnic pomocí matic, operace s maticemi, elementární řádkové a sloupcové transformace, Gaussova eliminace, výpočet inverzní matice.
  • Vektorové prostory -- základní pojmy: Lineární kombinace vektorů, lineární závislost a nezávislost, báze, dimenze, podprostory, součty a průniky podprostorů, souřadnice.
  • Lineární zobrazení: Definice, obraz a jádro, izomorfismus, matice zobrazení v daných bázích, matice přechodu od jedné báze k druhé bázi, změna matice zobrazení při změně bází.
  • Soustavy lineárních rovnic: Množiny řešení homogenních a nehomogenních rovnic, hodnost matice, Frobeniova věta.
  • Determinanty: Permutace, definice determinantu, základní vlastnosti, Laplaceův rozvoj, aplikace na výpočet inverzní matice, Cramerovo pravidlo.
  • Afinní podprostory v $ R ^n$: Definice, zaměření afinního podprostoru, parametrický a implicitní popis, vzájemná poloha afinních podprostorů, afinní zobrazení.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích zima 1995, zima 1996, zima 1997, podzim 1999, podzim 2000, podzim 2001, jaro 2003.