IB102 Automata and Grammars

Faculty of Informatics
Autumn 2008
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jan Strejček, Ph.D. (lecturer)
RNDr. Tomáš Babiak, Ph.D. (seminar tutor)
RNDr. František Blahoudek, Ph.D. (seminar tutor)
RNDr. Václav Brožek, Ph.D. (seminar tutor)
RNDr. Petra Budíková, Ph.D. (seminar tutor)
doc. RNDr. Milan Češka, Ph.D. (seminar tutor)
Bc. Tomáš Janoušek (seminar tutor)
doc. RNDr. Petr Novotný, Ph.D. (seminar tutor)
RNDr. Petr Ročkai, Ph.D. (seminar tutor)
RNDr. Mária Svoreňová, Ph.D. (seminar tutor)
Mgr. Bc. Martin Šmérek (seminar tutor)
RNDr. Jana Tůmová, Ph.D. (seminar tutor)
Mgr. et Mgr. Miroslav Cupák (assistant)
RNDr. Jakub Chaloupka, Ph.D. (assistant)
Mgr. Bohuslav Kabrda (assistant)
Mgr. Martin Křivánek (assistant)
Mgr. Lukáš Másilko (assistant)
Mgr. Martin Milata (assistant)
Mgr. Filip Štefaňák (assistant)
Guaranteed by
prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Jan Strejček, Ph.D.
Timetable
Mon 10:00–11:50 D1, Mon 10:00–11:50 D3
  • Timetable of Seminar Groups:
IB102/01: Tue 16:00–17:50 B011, T. Babiak
IB102/02: Tue 18:00–19:50 A107, T. Babiak
IB102/03: Mon 12:00–13:50 B003, F. Blahoudek
IB102/04: Thu 8:00–9:50 B204, V. Brožek
IB102/05: Mon 16:00–17:50 B204, M. Češka
IB102/06: Mon 18:00–19:50 B204, M. Češka
IB102/07: Mon 14:00–15:50 B011, T. Janoušek
IB102/08: Tue 8:00–9:50 C511, P. Budíková
IB102/09: Fri 8:00–9:50 B410, P. Novotný
IB102/10: Thu 8:00–9:50 B011, P. Ročkai
IB102/11: Wed 14:00–15:50 B011, J. Strejček
IB102/12: Thu 12:00–13:50 B204, J. Strejček
IB102/13: Tue 16:00–17:50 B003, M. Svoreňová
IB102/14: Fri 12:00–13:50 B011, M. Šmérek
IB102/15: Wed 12:00–13:50 B003, J. Tůmová
IB102/16: Wed 18:00–19:50 B410, J. Tůmová
Prerequisites (in Czech)
( MB101 Mathematics I || MB005 Foundations of mathematics )&& ! IB005 Formal languages and Automata
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 24 fields of study the course is directly associated with, display
Course objectives
The purpose of this course is twofold: to introduce computer science students to the rich heritage of models and abstractions that have arisen over the years, and to develop the capacity to form abstractions of their own and reason in terms of them.
Syllabus
  • Finite automata and regular grammars: Pumping lemma, Myhill-Nerode theorem, minimization of finite automata.
  • Properties of regular languages: closure properties, Kleene theorem, regular expressions.
  • Context-free grammars and languages: transformation of context-free grammars, selected normal forms, Pumping lemma, closure properties.
  • Pushdown automata and their relation to context-free grammars: top-down and bottom-up nondeterministic syntax analysis.
  • Deterministic pushdown automata.
Literature
  • ČERNÁ, Ivana, Mojmír KŘETÍNSKÝ and Antonín KUČERA. Formální jazyky a automaty I. Elportál. Brno: Masarykova univerzita, 2006. ISSN 1802-128X. URL info
  • MOLNÁR, Ľudovít and Bořivoj MELICHAR. Gramatiky a jazyky. Edited by Milan Češka. 1. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1987, 188 s. info
  • HOPCROFT, John E. and Jeffrey D. ULLMAN. Introduction to automata theory, languages, and computation. Reading: Addison-Wesley Publishing Company, 1979, 418 s., ob. ISBN 0-201-02988-X. info
  • KOZEN, Dexter C. Automata and computability. New York: Springer, 1997, xiii, 400. ISBN 0387949070. info
  • SIPSER, Michael. Introduction to the theory of computation. Boston: PWS Publishing Company, 1997, xv, 396 s. ISBN 0-534-94728-X. info
Assessment methods
Lectures and exercises. Optional homeworks. Written intrasemestral test and written final test. Results of the intrasemestral test is included in the overall evaluation. Tests are written without any reading materials.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Teacher's information
http://www.fi.muni.cz/~xstrejc/IB102/
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.
  • Enrolment Statistics (Autumn 2008, recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2008/IB102