FI:IA174 Fundaments of Cryptography - Informace o předmětu
IA174 Fundaments of Cryptography
Fakulta informatikypodzim 2021
- Rozsah
- 2/0/1. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. RNDr. Petr Novotný, Ph.D. (přednášející)
RNDr. Antonín Dufka (pomocník)
RNDr. Ján Jančár (pomocník)
Mgr. Jan Kvapil (pomocník)
RNDr. Vladimír Sedláček, Ph.D. (pomocník)
RNDr. Vojtěch Suchánek (pomocník)
Mgr. Marek Sýs, Ph.D. (pomocník) - Garance
- doc. RNDr. Petr Novotný, Ph.D.
Katedra teorie programování – Fakulta informatiky - Rozvrh
- Po 13. 9. až Po 6. 12. Po 14:00–15:50 D3
- Předpoklady
- Grasp of basic mathematical concepts (e.g. MB154 course). Awareness of basic aims and building blocks of cryptography, corresponding to the respective parts of the PV080 course.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 32 mateřských oborů, zobrazit
- Cíle předmětu
- The course covers theoretical foundations of cryptography, ranging from encryption and hashing primitives to more modern topics such as blockchain technologies. We will learn why are the state-of-the-art cryptographic algorithms constructed in the way they are, and how to reason about their mechanics and security guarantees via the language of mathematics.
- Výstupy z učení
- Upon a successful completion of the course, the student will be able to:
*Explain and understand the mechanics of basic primitives of both symmetric and asymmetric cryptography, including the underlying mathematics.
*Explain and understand the function, construction, and the use of cryptographic hash functions.
*Explain and understand cryptographic techniques for ensuring data authenticity and integrity, including digital signature schemes.
*Understand, at an abstract level, the purpose and foundations of post-quantum cryptography, secret sharing, homomorphic encryption, and zero-knowledge proofs, so as to be able to learn further details of these topics on her/his own.
*Understand possible weaknesses of cryptosystems and various trade-offs in their design.
*Analyse weaknesses of simple cryptosystems.
*Explain and understand the concept of block chain and smart contracts, and be aware of the design principles behind relevant blockchain protocols. - Osnova
- FUNDAMENTALS (8 letcures)
- Symmetric cryptography (2 lectures):
- *Symmetric block ciphers: design principles and basic notions (boolean functions, random permutations, confusion, diffusion, non-linearity); design of iterated block ciphers, rounds, key schedules; AES; modes of operations of block ciphers.
- *Symmetric stream ciphers: General principles, ChaCha cipher, relation to pseudorandom number generators.
- Asymmetric cryptography (3 lectures):
- *General principles and design elements, "reductions" to hard problems.
- *RSA algorithm: math foundations (modular arithmetic, multiplicative Z_n^x groups, Euler's theorem, Chinese remainder theorem, extended Euclidean algorithm); RSA encryption, possible attacks, relationship to integer factorization.
- *Cryptography based on discrete logarithm (DL): refresher of basic group theory; DL in (Z_n )^x groups, Diffie-Hellman key exchange, DSA; discrete logarithm on elliptic curve groups, elliptic curve cryptography, ECDSA.
- Cryptographic hash functions (CHFs, 1 lecture): Design principles, Merkle–Damgård construction, sponge construction, collision-resistant CHFs, Keccak CHF, attacks against CHFs.
- Data integrity, message authentication, signatures (2 lectures):
- *Message authentication codes (MACs): integrity, authenticity, construction from block ciphers, construction from hash functions; authenticated encryption, AEAD.
- *Digital signatures: non-repudiation, signature schemes (RSA, DSA, ElGamal), attacks against dig. signature schemes, blind signatures.
- *Integrity of data structures: hash trees, their use in Bitcoin.
- ADVANCED TOPICS (5 lectures):
- Post-quantum cryptography (1 lecture): Quantum-computer attacks on RSA and discrete logarithm schemes, overview of candidate techniques for post-quantum cryptography (lattice-based cryptography, code-based cryptography, multivariate cryptography), standardization of post-quantum cryptography.
- Homomorphic encryption (1 lecture): basic definitions, simple examples of partially homomorphic encryption; fully homomorphic encryption, Gentry's construction, bootstrapping, recent developments.
- Secret sharing (1 lecture): basic concepts, examples of secret sharing schemes (CRR-based, Shamir,...), verifiable secret sharing, end-to-end auditable voting systems.
- Zero-knowledge proofs (1 lecture): mathematical foundations, connection to complexity classes, illustration on concrete problems, zero-knowledge proofs in blockchain systems.
- Blockchain technology (1 lecture): blockchain as a general concept of a distributed ledger; Bitcoin, its design, proof of work, mining process; Ethereum, smart contracts, proof of stake; economical and social impact of blockchain technologies.
- Literatura
- MENEZES, A. J., Paul van OORSCHOT a Scott A. VANSTONE. Handbook of applied cryptography. Boca Raton: CRC Press, 1997, xiii, 780. ISBN 0-8493-8523-7. info
- Výukové metody
- lecture, homework assignments
- Metody hodnocení
- mandatory homework assignments, final written exam
- Vyučovací jazyk
- Angličtina
- Informace učitele
- https://www.fi.muni.cz/~xnovot18/IA174_student_info.html
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Statistika zápisu (podzim 2021, nejnovější)
- Permalink: https://is.muni.cz/predmet/fi/podzim2021/IA174