FSS:MVZn5082 Data-Driven Research and AI To - Informace o předmětu
MVZn5082 Data-Driven Research and AI Tools for International Relations and European Studies
Fakulta sociálních studiíjaro 2025
- Rozsah
- 2/0. 4 kr. Ukončení: z.
Vyučováno kontaktně - Vyučující
- Ing. Mgr. Adriana Ilavská, Ph.D. (přednášející)
- Garance
- prof. PhDr. Zdeněk Kříž, Ph.D.
Katedra mezinárodních vztahů a evropských studií – Fakulta sociálních studií
Kontaktní osoba: Olga Cídlová, DiS.
Dodavatelské pracoviště: Katedra mezinárodních vztahů a evropských studií – Fakulta sociálních studií - Rozvrh
- Út 10:00–11:40 P22
- Předpoklady
- The course is conducted in English (with all readings and discussions in this language), so students should feel confident reading, discussing, and writing in the language to participate fully in class activities and assignments.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
Předmět si smí zapsat nejvýše 30 stud.
Momentální stav registrace a zápisu: zapsáno: 25/30, pouze zareg.: 0/30, pouze zareg. s předností (mateřské obory): 0/30 - Mateřské obory/plány
- Evropská studia (program FSS, N-EVS)
- Evropská studia (program FSS, N-MS)
- International Relations and European Politics (program FSS, N-IREP)
- Mezinárodní vztahy (program FSS, N-MS)
- Mezinárodní vztahy (program FSS, N-MV)
- Cíle předmětu
- The primary goal of this course is to familiarize students with data sources and AI tools that can be ethically utilized to enhance not only their academic research but also a wide range of professional tasks. While the course emphasizes improving research and analytical capabilities in International Relations and European Studies, it also highlights the versatility of these tools in non-academic settings. The course emphasizes practical applications, ethical considerations, and the potential of AI tools to support critical tasks, such as data analysis, literature reviews, and effective problem-solving in professional settings. This course provides hands-on experience with data and AI tools, equipping students with practical skills to apply data-driven research methods in both academic and professional settings.
- Výstupy z učení
- Upon successful completion of this course, students will be able to:
- Identify and effectively use diverse qualitative and quantitative data sources and databases relevant to International Relations and European Studies.
- Leverage AI tools to support key research activities, including literature reviews, data analysis, methodological integration, and the presentation of results.
- Integrate data and methods while ensuring ethical considerations guide their research practices and AI usage. - Osnova
- The course is structured to guide students through all stages of the research process, integrating diverse data types and AI tools.
- The semester begins with an exploration of literature sources and the use of AI tools for identifying research questions and conducting literature reviews. Students will learn to critically evaluate studies, integrate relevant data, and develop research questions.
- Next, the focus shifts to identifying, integrating, and analyzing qualitative and quantitative data sources, with an emphasis on utilizing AI tools for analysis while maintaining ethical practices.
- In the later stages, students will explore how AI can assist in presenting research findings effectively to academic and professional audiences.
- The course concludes with a discussion on the broader implications of AI and data integration for research and practice in International Relations and European Studies.
- The teacher has the right to adjust the course schedule during the semester.
- Výukové metody
- The teaching will take the form of interactive lectures that provide a concise introduction to key concepts, followed by practical demonstrations, guided exercises, and discussions. Guided exercises will enable students to apply these concepts immediately, solving small tasks individually or in groups, while discussions will encourage critical thinking about challenges, ethical considerations, and broader implications of AI in research.
- Metody hodnocení
- Assessment for this course will consist of three main components.
1. Practical Assignments (50%) - three tasks distributed throughout the semester, designed to apply the tools and techniques introduced. Points will be awarded for each assignment, and students will have the opportunity to resubmit the one with the lowest score as part of their final project.
2. Final Project (40%) - requires integrating course concepts, culminating in a written report
3. Active Participation in Classes (10%) - points will be awarded for engagement in discussions, group activities, and in-class exercises - Vyučovací jazyk
- Angličtina
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
- Statistika zápisu (nejnovější)
- Permalink: https://is.muni.cz/predmet/fss/jaro2025/MVZn5082