LF:MDAM021 Analýza a management dat - Informace o předmětu
MDAM021 Analýza a management dat pro zdravotnické obory
Lékařská fakultajaro 2014
- Rozsah
- 2/0/0. 4 kr. Ukončení: k.
- Vyučující
- prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
RNDr. Danka Haruštiaková, Ph.D. (cvičící)
RNDr. Denisa Krejčí, Ph.D. (cvičící)
Michaela Gregorovičová (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
Institut biostatistiky a analýz – Jiná pracoviště pro vzdělávací a vědecko-výzkumnou činnost – Lékařská fakulta
Dodavatelské pracoviště: Institut biostatistiky a analýz – Jiná pracoviště pro vzdělávací a vědecko-výzkumnou činnost – Lékařská fakulta - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Ošetřovatelská péče v gerontologii (program LF, N-SZ) (2)
- Cíle předmětu
- Předmět je koncipován jako úvodní a prakticky orientovaný kurz zaměřený na širokou oblast aplikace analýzy dat a informačních technologií v medicíně. Důraz je kladen na řízení a správu dat klinických studií a základní aspekty provozní informatiky zdravotnických zařízení. V oblasti analýzy dat student projde teoretickým výkladem základů jednorozměrných a vícerozměrných metod a seznámí se s problematikou optimalizace experimentálních plánů. Důraz je kladen i na praktickou stránku výuky a veškeré výpočetní techniky jsou procvičovány s pomocí běžně dostupných softwarových nástrojů (Statistica for Windows, SPSS). Studenti budou podrobně seznámeni se všemi aspekty správy a hodnocení dat klinických studií, především stanovení nutné velikosti vzorku, nastavení pravidel managementu dat, randomizace při náběru pacientů, průběžné a závěrečné statistické hodnocení. Aplikace informačních technologií se zaměřují na obecné principy přístupu uživatele k výpočetním zdrojům a konkretizují je vždy na různých implementacích počítačových sítí. Posluchač získá teoretické a praktické poznatky z oblasti tvorby a správy databází a naučí se prakticky využívat dnes běžně přístupné zdroje místních počítačových systémů, jejich sítí a jejich připojení k Internetu. V průběhu kurzu budou posluchači rovněž zdokonaleni v užívání produktů MS Office.
- Osnova
- BLOK A. Základy analýzy dat
- 1. Statistika v klinickém výzkumu a praxi - úvodní seznámení se základními principy statistické analýzy dat. Pravděpodobnostní prezentace výsledků, principy plánování výzkumů, základy testování hypotéz. Typy dat v klinickém výzkumu a grafické možnosti jejich znázornění. Specifika klinických dat a jejich důsledky pro analýzu. Popis dat, kvantifikace variability a parametrů středu výběrových rozložení. Distribuční funkce. Principy pojmů kalibrace, prognóza, model.
- 2. Modelová rozložení a jejich praktické využití. Odhady intervalů spolehlivosti, prezentace odhadů rozptylu, aritmetického průměru, geometrického průměru a mediánu. Sumární statistika spojitých a diskrétních dat. Příprava dat k analýze. Grafické nástroje. Transformace dat. Kontrola kvality dat, vyhledání odlehlých hodnot, využití počítačové techniky.
- 3. Teorie testování hypotéz. Jednorozměrné metody ve srovnávacích statistických testech, parametrické a neparametrické metody. Spojitá a diskrétní data. Základy korelační a regresní analýzy: Základy korelační analýzy. Základy regresní analýzy.
- 4. Základy vícerozměrných analýz. Vícerozměrné regrese, logistická regrese. Shluková analýza, faktorová analýza, diskriminační analýza. Data mining.
- 5. Statistické testy používané při hodnocení diagnostických testů: diskriminační analýza, typologie subjektů hodnocení, ROC analýza, sensitivita a specificita testů. Základy analýzy přežití.
- 6. Základy analýzy epidemiologických dat a hodnocení populačních rizik. Standardizace epidemiologických dat, analýza dlouhodobých trendů, prediktivní analýzy.
- BLOK B. Management dat ve zdravotnictví, aplikace informačních technologií
- 7. Uživatelův přístup k počítači, jeho profile, lokální data. Operační systém. Typy operačních systémů, chráněný a nechráněný přístup. Síť - přenos informací. Přenos dat, vzdálené přihlašování a práce ve vzdáleném uzlu, elektronická pošta, sdílení periferií. Spojování počítačů. Nízkorychlostní periferií (RS-232C). Síťové periferie.
- 8. Sítě, Internet. Typy sítí, sítě sítí. Síť typu IP. Internet. Historie a principy IP. Vrstvy sítí. Síťové služby. Přenos souborů, ftp. Sdílení periferií. Elektronická pošta, servery SMTP a POP3, IMAP. Další síťové služby, vzdálené přihlašování, telnet rlogin, rozhovor, talk, write. Informační servery. WWW - URL, html, čtenář, autor. Síťové informační systémy, databázové zpracování. Autorizace v sítích.
- 9. Zásady tvorby databází a správy dat s ohledem na zajištění kvality dat (QA/QC). Zabezpečení a zálohování dat, export, import, monitoring a transfer dat. Možnosti off-line a on-line komunikace. Digitalizace dat - role datového managera v klinickém hodnocení a praxi, existující normy. Kontrola vstupních dat: logické vazby, opakované zadávání. Ochrana osobních údajů, legislativní aspekty zdravotnické informatiky.
- BLOK C. Plánování, management a hodnocení klinických studií
- 10. Základní terminologie, etické a právní aspekty. Definice základních pojmů: Klinické hodnocení léčiv (KHL). Studie Fáze I-IV. Zadavatel. Zkoušející lékař. Monitor. Statistik. Subjekt hodnocení. Výzkumná smluvní organizace (CRO). Protokol. CRF.ICH GCP. Organizace studií: Komunikace se SÚKL, dokumentace. Pojištění KHL. Žádost o povolení/ohlášení, dodatky, výroční zpráva, předčasné ukončení, závěrečná zpráva. Etické aspekty: Informovaný souhlas/Informace pro pacienta. Helsinská deklarace. Právní aspekty: Hlavní legislativní prameny v ČR a v EU, harmonizace.
- 11. Analýza dat v KHL. Design KHL Paralelní uspořádání. Cross-over a faktoriální design. Fáze I-IV. Analýza dat Statistické minimum: Typy dat v KHL. Prezentace dat (deskriptivní statistika). Princip testování hypotéz v KHL. Optimalizace velikosti vzorku Faktory ovlivňující velikost vzorku. Základní vzorce. Softwarové nástroje. Aplikovaná analýza dat v KHL. Protokol. Průběh KHL - správa dat. souhrnná zpráva o KHL
- 12. Randomizace a průběžný monitoring plánovaného experimentu. Princip randomizačních technik, princip náhodnosti. Kompletní randomizace. Permutační bloková randomizace. Stratifikace. Adaptivní randomizační techniky. Softwarové zajištění randomizačních procedur, protokolárních funkcí, průběžných hlášení a základní sumarizace dat.
- Literatura
- ZAR, Jerrold H. Biostatistical analysis. 5th ed. Upper Saddle River, N.J.: Prentice Hall, 2010, xiii, 944. ISBN 9780131008465. info
- HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993, 476 s. ISBN 8020000801. info
- ALTMAN, Douglas G. Practical statistics for medical research. 1st ed. Boca Raton: Chapmann & Hall/CRC, 1991, xii, 611. ISBN 0412276305. info
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Předmět je uzavřen písemným kolokviem testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá blokově.
- Statistika zápisu (jaro 2014, nejnovější)
- Permalink: https://is.muni.cz/predmet/med/jaro2014/MDAM021