LF:MIKAM021s Analýza a management dat-sem. - Informace o předmětu
MIKAM021s Analýza a management dat pro zdravotnické obory - seminář
Lékařská fakultajaro 2018
- Rozsah
- 0/0.3/0. 5 celkem. 1 kr. Ukončení: z.
- Vyučující
- RNDr. Jiří Jarkovský, Ph.D. (cvičící)
RNDr. Denisa Krejčí, Ph.D. (cvičící)
Mgr. et Mgr. Jiří Kalina, Ph.D. (cvičící)
RNDr. Danka Haruštiaková, Ph.D. (cvičící)
Bc. Tereza Polzer, DiS. (pomocník) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
Institut biostatistiky a analýz – Jiná pracoviště pro vzdělávací a vědecko-výzkumnou činnost – Lékařská fakulta
Kontaktní osoba: Bc. Tereza Polzer, DiS.
Dodavatelské pracoviště: Institut biostatistiky a analýz – Jiná pracoviště pro vzdělávací a vědecko-výzkumnou činnost – Lékařská fakulta - Předpoklady
- MIKVO011p Výzkum v ošetřovatelství - př.
Předpokladem je pouze základní zkušenosti s prací na PC. - Omezení zápisu do předmětu
- Předmět je určen pouze studentům mateřských oborů.
- Mateřské obory/plány
- Intenzivní péče (program LF, N-SZ)
- Cíle předmětu
- Předmět je koncipován jako úvodní a prakticky orientovaný kurz zaměřený na širokou oblast aplikace analýzy dat a informačních technologií v medicíně. Důraz je kladen na řízení a správu dat klinických studií a základní aspekty provozní informatiky zdravotnických zařízení. V oblasti analýzy dat student projde teoretickým výkladem základů jednorozměrných a vícerozměrných metod a seznámí se s problematikou optimalizace experimentálních plánů. Důraz je kladen i na praktickou stránku výuky a veškeré výpočetní techniky jsou procvičovány s pomocí běžně dostupných softwarových nástrojů (Statistica for Windows, SPSS). Studenti budou podrobně seznámeni se všemi aspekty správy a hodnocení dat klinických studií, především stanovení nutné velikosti vzorku, nastavení pravidel managementu dat, randomizace při náběru pacientů, průběžné a závěrečné statistické hodnocení. Aplikace informačních technologií se zaměřují na obecné principy přístupu uživatele k výpočetním zdrojům a konkretizují je vždy na různých implementacích počítačových sítí. Posluchač získá teoretické a praktické poznatky z oblasti tvorby a správy databází a naučí se prakticky využívat dnes běžně přístupné zdroje místních počítačových systémů, jejich sítí a jejich připojení k Internetu. V průběhu kurzu budou posluchači rovněž zdokonaleni v užívání produktů MS Office.
- Výstupy z učení
- Student bude schopen:
- provést prakticky analýzu dat běžnými softwarových nástrojů (Statistica for Windows, SPSS). - Osnova
- 1.týden Příprava dat k analýze. Grafické nástroje. Transformace dat. Kontrola kvality dat, vyhledání odlehlých hodnot, využití počítačové techniky.
- 2.týden Statistické testy používané při hodnocení diagnostických testů: diskriminační analýza, typologie subjektů hodnocení, ROC analýza, sensitivita a specificita testů.
- 3.týden Základy analýzy přežití.
- 4.týden Základy analýzy epidemiologických dat a hodnocení populačních rizik.
- 5.týden Standardizace epidemiologických dat, analýza dlouhodobých trendů, prediktivní analýzy.
- 6. týden Uživatelův přístup k počítači, jeho profile, lokální data. Operační systém. Typy operačních systémů, chráněný a nechráněný přístup. Síť -přenos informací. Přenos dat, vzdálené přihlašování a práce ve vzdáleném uzlu, elektronická pošta, sdílení periferií. Spojování počítačů. Nízkorychlostní periferií (RS-232C). Síťové periferie.
- 7.týden Informační servery. WWW - URL, html, čtenář, autor. Síťové informační systémy, databázové zpracování. Autorizace v sítích.
- 8.týden Digitalizace dat - role datového managera v klinickém hodnocení a praxi, existující normy. Kontrola vstupních dat: logické vazby, opakované zadávání.
- 9.týden Ochrana osobních údajů, legislativní aspekty zdravotnické informatiky.
- 10.týden Organizace studií: Komunikace se SÚKL, dokumentace. Pojištění KHL. Žádost o povolení/ohlášení, dodatky, výroční zpráva, předčasné ukončení, závěrečná zpráva.
- 11.týden Analýza dat v KHL. Design KHL Paralelní uspořádání. Cross-over a faktoriální design. Fáze I-IV.
- 12.týden Analýza dat Statistické minimum: Typy dat v KHL. Prezentace dat (deskriptivní statistika). Princip testování hypotéz v KHL.
- 13.týden Optimalizace velikosti vzorku Faktory ovlivňující velikost vzorku.
- 14.týden Základní vzorce. Softwarové nástroje. Aplikovaná analýza dat v KHL. Protokol. Průběh KHL - správa dat. souhrnná zpráva o KHL
- 15.týden Řešení problémových situací – příprava pro diplomovou práci
- Literatura
- doporučená literatura
- ZAR, Jerrold H. Biostatistical analysis. 5th ed. Upper Saddle River, N.J.: Prentice Hall, 2010, xiii, 944. ISBN 9780131008465. info
- POCOCK, Stuart J. Clinical trials : a practical approach. Chichester: John Wiley & Sons, 1999, xii, 266. ISBN 0471901555. info
- MCFADDEN, Eleanor. Management of data in clinical trials. New York: John Wiley & Sons, 1998, xi, 210. ISBN 047130316X. info
- HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993, 476 s. ISBN 8020000801. info
- ALTMAN, Douglas G. Practical statistics for medical research. 1st ed. Boca Raton: Chapmann & Hall/CRC, 1991, xii, 611. ISBN 0412276305. info
- Výukové metody
- Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
- Metody hodnocení
- Zápočet je udělen za účast.
- Statistika zápisu (jaro 2018, nejnovější)
- Permalink: https://is.muni.cz/predmet/med/jaro2018/MIKAM021s