BMAM041 Analýza a management dat pro zdravotnické obory

Lékařská fakulta
jaro 2023
Rozsah
2/0/0. 30. 2 kr. Ukončení: k.
Vyučující
RNDr. Danka Haruštiaková, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
Garance
prof. RNDr. Ladislav Dušek, Ph.D.
Institut biostatistiky a analýz – Jiná pracoviště pro vzdělávací a vědecko-výzkumnou činnost – Lékařská fakulta
Dodavatelské pracoviště: Institut biostatistiky a analýz – Jiná pracoviště pro vzdělávací a vědecko-výzkumnou činnost – Lékařská fakulta
Rozvrh
Út 14. 2. 12:00–14:00 F01B1/709, Út 21. 2. 12:00–14:00 F01B1/709, Út 28. 2. 12:00–14:00 F01B1/709, Út 7. 3. 12:00–14:00 F01B1/709, Út 14. 3. 12:00–14:00 F01B1/709, Út 21. 3. 12:00–14:00 F01B1/709, Út 28. 3. 12:00–14:00 F01B1/709, Út 4. 4. 12:00–14:00 F01B1/709, Út 11. 4. 12:00–14:00 F01B1/709, Út 18. 4. 12:00–14:00 F01B1/709, Út 25. 4. 12:00–14:00 F01B1/709, Út 16. 5. 12:00–14:00 F01B1/709, Út 23. 5. 12:00–14:00 F01B1/709
Předpoklady
Předpokladem je pouze základní zkušenosti s prací na PC.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Předmět je úvodem do aplikované analýzy dat pro studenty biologických a klinických vědních oborů. Látka je probírána od teoretických základů (principy provádění statistických odhadů, existence stochastických rozložení, základy statistických testů), přes jednoduché aplikace (jednovýběrové a dvouvýběrové testy, korelační analýza) až po základy stochastického modelování a experimentálního designu (plánování experimentů, základy regresní analýzy, analýza rozptylu). Teorie je vždy probírána v přímé spojitosti s praktickými příklady. Kurz vede k osvojení základních principů biostatistické analýzy dat a připravuje uchazeče k jejímu samostatnému využití ve vlastní vědecké práci.
Výstupy z učení
V závěru kurzu jsou studenti schopni:
- definovat strukturu datového souboru pro statistickou analýzu;
- vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat;
- identifikovat vhodné metody popisné analýzy dat;
- fomulovat hypotézy statistické analýzy dat;
- vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz;
- interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře);
- posoudit vhodnost aplikace různých statistických metod na různé typy dat.
Osnova
  • 1. Práce s daty – zásady správného ukládání dat a jejich kontroly. MS Office Excel – vhodný nástroj pro manipulaci s daty.
  • 2. Úvod do statistiky. Typy dat v medicíně a biologii; nominální, ordinální, spojitá proměnná. Vizualizace kvantitativních a kvalitativních (kategoriálních) proměnných.
  • 3. Popisná statistika. Průměr, medián, kvantily, rozptyl. Frekvenční tabulka.
  • 4. Rozložení spojitých proměnných. Normální rozložení, log-normální rozložení.
  • 5. Základní principy testování hypotéz. Definice nulové a alternativní hypotézy. Hladina významnosti. Chyba I. a II. druhu.
  • 6. Ověření normality rozložení. Grafické ověření normality (histogram, normálně-pravděpodobnostný graf). Shapiro-Wilkův test k ověření normality rozložení.
  • 7. Parametrické testy: t-testy. Jednovýběrový t-test, dvouvýběrový t-test, párový t-test.
  • 8. Analýza rozptylu ANOVA.
  • 9. Neparametrické testy: jednovýběrový Wilcoxnův test, Mannův-Whitneyův U test, párový Wilcoxnův test, Kruskalův-Wallisův test.
  • 10. Definice kontingenční tabulky a její analýza: Pearsonův chí-kvadrát test, Fisherův přesný test, McNemarův test.
  • 11. Korelace. Pearsonův korelační koeficient, Spearmanův korelační koeficient.
  • 12. Úvod do regresní analýzy. Lineární regrese.
Literatura
  • ALTMAN, Douglas G. Practical statistics for medical research. 1st ed. Boca Raton: Chapmann & Hall/CRC, 1991, xii, 611. ISBN 0412276305. info
  • HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993, 476 s. ISBN 8020000801. info
  • MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
  • ZAR, Jerrold H. Biostatistical analysis. 4th ed. Upper Saddle River, N.J.: Prentice Hall, 1999, [941] s. ISBN 013081542X. info
Výukové metody
Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
Metody hodnocení
Předmět je uzavřen písemným kolokviem testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2024, jaro 2025.