EMBS0111p Biostatistika - přednáška

Lékařská fakulta
podzim 2023
Rozsah
2/0/0. 30. 5 kr. Ukončení: zk.
Vyučující
prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Jiří Jarkovský, Ph.D. (přednášející)
Garance
prof. RNDr. Ladislav Dušek, Ph.D.
Institut biostatistiky a analýz – Jiná pracoviště pro vzdělávací a vědecko-výzkumnou činnost – Lékařská fakulta
Kontaktní osoba: RNDr. Jiří Jarkovský, Ph.D.
Dodavatelské pracoviště: Institut biostatistiky a analýz – Jiná pracoviště pro vzdělávací a vědecko-výzkumnou činnost – Lékařská fakulta
Rozvrh
St 17:00–18:40 B11/132
Předpoklady
Nejsou - jde o základní kurz.
Omezení zápisu do předmětu
Předmět je určen pouze studentům mateřských oborů.
Mateřské obory/plány
Cíle předmětu
Předmět je úvodem do praktické analýzy dat pro studenty biologických a případně klinických vědních oborů. Látka navazuje na přednášku Bi5040 Biostatistika z pohledu praktického řešení problémů analýzy dat ve statistických software (popisná statistika, jednovýběrové a dvouvýběrové testy, testy pro kategoriální data, ANOVA, korelační a regresní analýza, vizualizace dat, základy experimentálního designu). Kurz vede k osvojení základních principů biostatistické analýzy dat a připravuje uchazeče k jejímu samostatnému využití ve vlastní vědecké práci.
Výstupy z učení
V závěru kurzu jsou studenti schopni:
Definovat strukturu datového souboru pro statistickou analýzu;
Vizualizovat vstupní data pro analýzu a tyto vizualizace interpretovat;
Identifikovat vhodné metody popisné analýzy dat;
Fomulovat hypotézy statistické analýzy dat;
Vybrat korektní statistické testy pro potvrzení/vyvrácení položených hypotéz;
Interpretovat výsledky statistického hodnocení dat (jak vlastní, tak v odborné literatuře);
Posoudit vhodnost aplikace různých statistických metod na různé typy dat
Osnova
  • 1. Úvod do statistiky, testování hypotéz. Stochastická rozložení, distribuční funkce, frekvenční tabulky, kvantily. Tabulky modelových rozložení. Výběry z biologických populací, zpracování dat. Úvod do plánování výběrů. 2. Spojitá, ordinální a nominální data v biologii. Odhady výběrových parametrů. Procenta a indexy jako odvozená biologická data. 3. Rozložení spojitých proměnných - testování hypotéz, grafické metody. Rozložení binárních proměnných - testování hypotéz, grafické metody. 4. Jednovýběrové testy. Testování hypotéz o parametrech výběrových populací: výběrový průměr, medián, směrodatná odchylka, rozptyl. Výběrové a experimentální plány pro testování parametrů výběrových populací. 5. Aplikace binomického a Poissonova rozložení v biologii, modelování pomocí binomického rozložení. Jednovýběrové testy o binomickém parametru p a Poissonově konstantě. 6. Srovnávání parametrů dvou výběrových populací. Experimentální plány - zcela znáhodněný a párový. Parametrické a neparametrické metody. Formální prezentace srovnání dvou výběrových populací v literatuře. Grafické metody. 7. Analýza binárních a ordinálních dat. Test dobré shody: genetika, molekulární biologie, ekologie. Analýza R x C kontingenčních tabulek, diskriminace kategoriálních dat. Binomický test a test homogenity binomických četností. 8. Korelační analýza. Parametrická a pořadová korelace. Míry podobnosti v ekologii (kovariance, korelační koeficienty, koeficienty podobnosti). Korelační a kovarianční matice. Parciální korelace. 9. Analýza rozptylu (ANOVA): modely jednoduchého třídění pro experimentální a ekologická data. Neparametrické metody analýzy rozptylu. 10. ANOVA dvojného třídění, testování interakcí jednoho nebo více pokusných zásahů, formální prezentace výsledků analýzy rozptylu. Stručný přehled experimentálních plánů: jednoduché a dvojné třídění, faktoriální plány a plány zcela znáhodněných bloků. Laboratorní a terénní pokusy. Hierarchická analýza rozptylu v genetice a ekologii. 11. Úvod do regresní analýzy. Regresní analýza přímky. Analýza rozptylu v regresní analýze přímky. Lineární regrese. polynomy vyššího řádu. Analýza rozptylu u těchto regresních analýz. Polynomiální regrese v návaznosti na ANOVA testy. Analýza reziduí regresních modelů. Úvod do vícerozměrné lineární regrese.
Literatura
  • Petrie, A., Watson, P. (2006) Statistics for Veterinary and Animal Science, Wiley-Blackwell; 2nd ed
  • Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.
  • Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.
Výukové metody
Teoretické přednášky doplněné komentovanými příklady, studenti jsou podporováni v kladení otázek týkajících se probírané látky.
Metody hodnocení
Předmět biostatistika je uzavřen písemnou zkouškou testující uchopení principů, správnou aplikaci a základní výpočetní dovednosti studentů. Zkouška pokrývá celý rozsah kurzu od popisné statistiky, předpokladů statistického testovní až po aplikaci konkrétních testů na konkrétních reálných příkladech.
Informace učitele
V podzimním semestru 2020 proběhne výuka přes MS Teams.
Další komentáře
Studijní materiály
Předmět je zařazen také v obdobích podzim 2020, podzim 2021, podzim 2022, podzim 2024.