PdF:TI1006 Introduction to Electrical Eng - Course Information
TI1006 Introduction to Electrical Engineering and Measurement
Faculty of EducationSpring 2025
- Extent and Intensity
- 0/2/0. 2 credit(s). Type of Completion: z (credit).
In-person direct teaching - Teacher(s)
- doc. Ing. Jiří Hrbáček, Ph.D. (seminar tutor)
- Guaranteed by
- doc. Ing. Jiří Hrbáček, Ph.D.
Department of Technical Education and Information Science – Faculty of Education
Contact Person: doc. Ing. Jiří Hrbáček, Ph.D.
Supplier department: Department of Technical Education and Information Science – Faculty of Education - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Lower Secondary School Teacher Training in Technology and IT Education (programme PdF, B-SPE)
- Lower Secondary School Teacher Training in Technology and IT Education (programme PdF, B-TV)
- Technology and IT for Education (programme PdF, B-SPE)
- Technology and IT for Education (programme PdF, B-TE3S) (2)
- Course objectives
- At the end of this course the student will be able to: able to explain and implement electric circuit, the field of electrical engineering, specifically from the DC Circuit, the issue of magnetic field and distribution of electricity.
- Learning outcomes
- At the end of this course the student will be able to: able to explain and implement electric circuit, the field of electrical engineering, specifically from the DC Circuit, the issue of magnetic field and distribution of electricity.
- Syllabus
- 1st Basic concepts (physical quantities and units - an international system of SI, building materials, the composition of matter, atoms construction, the movement of particles, free electrons, electric charge, the creation of electricity, power density, the types of substances in depending on the conductivity). 2nd Electric circuit (elements of electrical circuits, power sources, load characteristics of sources, resistors, capacitors, resistors rating, a number of standard, design and construction of resistors). 3rd DC (Ohm law, resistance resistor, the calculation of the resistance of conductors properties, conductivity, resistivity, resistance to temperature dependence, temperature coefficient of resistance, superconductivity, the work and performance of electrical power, efficiency, Joule-Lenc law, thermal and electrical appliances). 4th DC Circuit Solutions (Kirchhoff laws, topology circuits, loop, knot, use Ohm Law and Kirchhoff's laws for dealing with circuit current, simplifying the circuit, transfiguration, divider voltage divider current method of loop currents, nodal analysis method). 5th Electrostatic field (Coulomb's law, the creation of an electrostatic field, dielectric, polarization dielectrics, showing electrostatic fields, variables and constants electrostatic field, the electrical strength of dielectrics). 6th Capacitors (capacity flat capacitor, types of capacitors, the use of capacitors, circuit solutions to capacitors, electrostatic energy field, charging and discharging capacitors, electrostatic phenomena in the practice). 7th Magnetic field (permanent magnets, electromagnets, the cause of the magnetic field, the emergence of the magnetic field, showing magnetic fields, folding magnetic fields, variable and constant magnetic field). 8th Magnetic substance (magnetic properties of materials, magnetisation characteristics of ferromagnetic substances, the initial magnetization curve, hysteresis loop, the cause of hysteresis, commutating curve, the use of magnetic substances, hysteresis losses, the use of magnetic fields). 9th Solution of magnetic circuits. (Hopkins law, the classification of magnetic circuit, electric shock, magnetic resistance and magnetic conductivity, analogies and differences in the solution of magnetic and electrical circuits). 10th Electromagnetic induction (induced voltage and induced current induction law, inductance coils, the magnetic field of energy, loss of ferromagnetic materials). 11th Electricity generation (the importance and benefits of electricity generation, the principle and operation of power plants, species of plants, environmental issues, load power, working diagram). 12th Distribution of electricity (the benefits of transmitting power over long distances, general electrification, grid, superficial phenomenon, lead, corona, the requirements for the transmission of electricity).
- Literature
- SMEJKAL, J: Elektrotechnika. Brno: VUT, 1991
- TKOTZ, K a kol: Příručka pro elektrotechnika. Praha: Europa-Sobotáles, 2002
- Teaching methods
- lectures
- Assessment methods
- 3 written tests, oral and practical exam
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week.
Note related to how often the course is taught: v komb. stud. blokově.
Information on the extent and intensity of the course: 8 h. konz./sem. (komb. stud.).
- Enrolment Statistics (Spring 2025, recent)
- Permalink: https://is.muni.cz/course/ped/spring2025/TI1006