PdF:MA0008 Theory of Probability - Course Information
MA0008 Theory of Probability
Faculty of EducationSpring 2020
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Helena Durnová, Ph.D. (lecturer)
RNDr. Břetislav Fajmon, Ph.D. (lecturer)
Mgr. Helena Durnová, Ph.D. (seminar tutor) - Guaranteed by
- Mgr. Helena Durnová, Ph.D.
Department of Mathematics – Faculty of Education
Supplier department: Department of Mathematics – Faculty of Education - Timetable
- Thu 8:00–9:50 učebna 30
- Timetable of Seminar Groups:
MA0008/02: Mon 10:00–11:50 učebna 41, B. Fajmon
MA0008/03: Thu 12:00–13:50 učebna 11, B. Fajmon - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics for Education (programme PdF, B-MA3S) (2)
- Mathematics for Education (programme PdF, B-SPE)
- Course objectives
- In the course, the student learns the basics of probability theory. At the end of the course, the student will have learnt to distinguish statistical and classical definition of probability and will know the formulas that allow us compute the probability of various phenomena. The students will also learn basic ways of treating random variable and the basic methods of describing a statistical sample.
- Learning outcomes
- At the end of the course, the student will have learnt to distinguish statistical and classical definition of probability and will know the formulas that allow us compute the probability of various phenomena. The students will also learn basic ways of treating random variable and the basic methods of describing a statistical sample.
- Syllabus
- Syllabus 1. Random variable. Classical and statistical definition of probability. 2. Theorems about adding and multiplying probabilities. Summation of probabilities. 3. Conditional probability. Independent events. Bayes's theorem. 4. Geometric probability. 5. Statistical definition of probability. Absolute and relative frequency. 6. Random variable. Discrete and continuous random variables and their distribution. Probability function, probability density, distribution function. 7. Basics of descriptive statistics. Arithmetic, geometric, and harmonic mean of a sample, standard deviation, variance. 8. Characteristics of random variables for various kinds of signs (nominal, alternative, interval) 9. Some discrete distributions and their parameters. 10. Some continuous distributions and their parameters 11. Point and interval estimates. 12. Testing hypotheses.
- Literature
- recommended literature
- BUDÍKOVÁ, Marie, Pavel OSECKÝ and Štěpán MIKOLÁŠ. Popisná statistika (Descriptive statistics). 4. vydání. Brno: MU Brno, 2007, 52 pp. ISBN 978-80-210-4246-9. info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika.Sbírka příkladů. (Probability Theory and Mathematical Statistics.Collection of Tasks.). 2.dotisk 2.přeprac.vyd. Brno: Masarykova univerzita Brno, 2002, 127 pp. ISBN 80-210-1832-1. info
- OSECKÝ, Pavel. Statistické vzorce a věty (Statistical formulas). Druhé rozšířené. Brno (Czech Republic): Masarykova univerzita, Ekonomicko-správní fakulta, 1999, 53 pp. ISBN 80-210-2057-1. info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. (Probability Theory and Mathematical Statistics. Collection of Tasks.). 2.,přepracované vyd. Brno: Masarykova univerzita Brno, 1998, 127 pp. ISBN 80-210-1832-1. info
- Teaching methods
- Theoretical lecture, solving problems, homework (solving assigned tasks)
- Assessment methods
- Written assignment, written and oral exam
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2020, recent)
- Permalink: https://is.muni.cz/course/ped/spring2020/MA0008