PdF:MA2BP_CGE Geometry - Seminar - Course Information
MA2BP_CGE Seminar of Geometry
Faculty of EducationAutumn 2011
- Extent and Intensity
- 0/2/0. 2 credit(s). Type of Completion: z (credit).
- Teacher(s)
- Mgr. Leni Lvovská, Ph.D. (seminar tutor)
doc. Mgr. Vojtěch Žádník, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Jaroslav Beránek, CSc.
Department of Mathematics – Faculty of Education - Timetable of Seminar Groups
- MA2BP_CGE/01: Wed 13:25–15:05 učebna 37, V. Žádník
MA2BP_CGE/02: Tue 9:45–11:25 učebna 35, V. Žádník - Prerequisites
- Good knowledge of linear algebra.
- Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Lower Secondary School Teacher Training in Mathematics (programme PdF, B-SPE)
- Lower Secondary School Teacher Training in Mathematics (programme PdF, B-TV)
- Lower Secondary School Teacher Training in Mathematics (programme PdF, M-ZS5)
- Course objectives
- At the end of the course students should be able to (a) solve standard problems in general Euclidean space including relative positions, distances, and deviations of affine subspaces, (b) characterize and analytically express isometric, similarity, and generic affine transformations, primarily in the Euclidean plane and space.
- Syllabus
- (a) Affine spaces and subspaces. Parametric and general expressions of affine subspaces. The notion of parallelism, relative positions. Half-spaces and convex hulls. Euclidean spaces. Inner product and the notion of perpendicularity. Exterior and vector product, Gramm's determinant, volumes. Distances and deviations of subspaces.
- (b) Isometric, similarity, and generic affine mappings, primarily the transformations of Euclidean plane and space. Definition, properties, and matrix representation. Classification via fixed points and eigenvectors. Decomposition into basic mappings (reflections with respect to hyperplanes, homotheties, basic affinities). Transformations of real plane by means of algebraic operations with complex numbers.
- Literature
- HORÁK, Pavel and Josef JANYŠKA. Analytická geometrie. Brno: Masarykova univerzita v Brně, 1997, 151 s. ISBN 80-210-1623-. info
- SEKANINA, Milan. Geometrie. 1. vyd. Praha: Státní pedagogické nakladatelství, 1988, 307 s. info
- BERGER, Marcel. Geometry. Translated by M. Cole - Silvio Levy. Corr. 2nd print. New York: Springer, 2009, xiii, 427. ISBN 9783540116585. info
- ŠEDIVÝ, Ondrej. Geometria : pre študentov matematiky učitel'ského štúdia na univerzitách a pedagogických fakultách. 1. vyd. Bratislava: Slovenské pedagogické nakladatel'stvo, 1987, 277 s. info
- Teaching methods
- Seminar.
- Assessment methods
- Individual homework, several written tests.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- https://is.muni.cz/auth/el/1441/podzim2011/MA2BP_CGE/op/index.html
- Enrolment Statistics (Autumn 2011, recent)
- Permalink: https://is.muni.cz/course/ped/autumn2011/MA2BP_CGE