PdF:ZS1BK_PGE1 Geometrie I - Informace o předmětu
ZS1BK_PGE1 Geometrie 1
Pedagogická fakultapodzim 2015
- Rozsah
- 0/0/1. 12. 4 kr. Ukončení: k.
- Vyučující
- RNDr. Květoslava Matoušková, CSc. (cvičící)
- Garance
- doc. RNDr. Jaroslav Beránek, CSc.
Katedra matematiky – Pedagogická fakulta
Kontaktní osoba: RNDr. Květoslava Matoušková, CSc.
Dodavatelské pracoviště: Katedra matematiky – Pedagogická fakulta - Rozvrh seminárních/paralelních skupin
- ZS1BK_PGE1/01: Pá 16. 10. 7:30–10:05 učebna 32, Pá 23. 10. 15:45–18:20 učebna 32, Pá 13. 11. 15:45–18:20 učebna 32, Pá 11. 12. 15:45–18:20 učebna 35, K. Matoušková
- Omezení zápisu do předmětu
- Předmět je určen pouze studentům mateřských oborů.
- Mateřské obory/plány
- Učitelství pro 1. stupeň základní školy (program PdF, M-ZS5)
- Cíle předmětu
- Obsahem předmětu je studium elementární eukleidovské geometrie. Hilbertův axiomatický systém, pojmy axiomatické, další pojmy odvozené z axiomů incidence, upořádání, rovnoběžnosti, shodnosti a spojitosti. Základní geometrické útvary, zejéna trojúhelníky, čyřúhelníky, kružnice a jejich vlastnosti. Množiny všech bodů s danou vlastností. Základy teorie míry - délka úsečky, velikost úhlu, velikost rovinných a prostorových útvarů, základy Jordanovy teorie míry. Hlavní cíle kurzu jsou: Prohloubení středoškolského kurzu elementární geometrie; osvojení si a používání správné terminologie, frazeologie a symboliky; porozumění vztahům a souvislostem; aplikovat znalosti při řešení úloh.
- Osnova
- Základní pojmy eukleidovské geometrie, axiomy, axiomatické pojmy.Hilbertův axiomatický system. Pojem geometrického útvaru, geometrické relace. Úsečka, polopřímka,polopřímky navzájem opačné, polorovina, poloroviny navzájem opačné, poloprostor, poloprostory navzájem opačné (definice užitím geometrické relace "bod leží mezi jinými dvěma", včetně jejich symbolických zápisů). Konvexní a nekonvexní množiny bodů, věta o průniku dvou konvexních množin bodů a její důkaz.Konvexní a nekonvexní úhel. Dvojice úhlů - úhly styčné, vedlejší, vrcholové, souhlasné, střídavé. Lomená čára. Jednoduchá lomená čára, jednoduchá uzavřená lomená čára.Mnohoúhelníky, konvexní mnohoúhelníky.Mnohostěny, konvexní mnohostěny, čtyřstěn. Shodnost, axiomy shodnosti.Shodnost úseček a úhlů, navazující pojmy - porovnávání úseček a úhlů, grafický součet a rozdíl úseček (úhlů), shodnost trojúhelníků.Pojmy vyplývající ze shodnosti úseček a úhlů (osa úsečky, osa úhlu, pravý úhel aj.). Některé další geometrické útvary a jejich vlastnosti. Okolí bodu v množině a pojmy z něho odvozené. Omezený útvar. Vnitřní, vnější a hraniční bod, vnitřek, vnějšek a hranice geometrického útvaru. Útvar uzavřený a omezený. Překrývající se a nepřekrývající se útvary v dané množině. Trojúhelník, základní vlastnosti, vztahy mezi stranami a úhly v trojúhelníku. Věta o součtu vnitřních úhlů v trojúhelníku a její důkaz, věta o vnějším úhlu trojúhelníku-s důkazem, trojúhelníková nerovnost a její důkaz, věta o stranách a protějších úhlech v trojúhelníku a její důkaz, příčky trojúhelníku - těžnice, střední příčky, výšky, osy stran a osy vnitřních a vnějších úhlů trojúhelníku (věty o základních vlastnostech těchto příček s důkazy). Čtyřúhelník konvexní a nekonvexní, třídění čtyřúhelníků, rovnoběžník, základní vlastnosti - věty s důkazy. Základní množiny všech bodů s danou vlastností v rovině a v prostoru. Osa úsečky, osa úhlu, Thaletova kružnice jako množiny všech bodů v rovině s danou vlastností (s důkazy).Kružnice, kruh - základní vlastnosti. Vzájemná poloha přímky a kružnice, vzájemná poloha dvou kružnic. Základy teorie míry. Délka úsečky a její vlastnosti, vzdálenost dvou bodů, vzdálenost dvou uzavřených geometrických útvarů. Velikost úhlu a její vlastnosti. Velikost rovinných geometrických útvarů - princip Jordanovy teorie míry v rovině (čtvercová síť, obal a jádro geometrického útvaru v dané síti, zjemňování sítí, vztahy mezi obaly a jádry daného útvaru a jejich velikostmi v různých sítích). Velikost geometrických útvarů v prostoru. Součástí studia uvedených témat je získání schopnosti použít studované pojmy k řešení vybraných geometrických úloh.
- Literatura
- FRANCOVÁ, Marta, Květoslava MATOUŠKOVÁ a Milena VAŇUROVÁ. Texty k základům elementární geometrie : pro studium učitelství 1. stupně základní školy. 2. opr. vyd. Brno: Masarykova univerzita, 1994, 107 s. ISBN 8021008806. info
- FRANCOVÁ, Marta, Květoslava MATOUŠKOVÁ a Milena VAŇUROVÁ. Sbírka úloh z elementární geometrie. 2. vyd. Brno: Masarykova univerzita, 2004, 86 s. ISBN 8021035706. info
- KOUŘIM, Jaroslav, Ondrej ŠEDIVÝ a František KUŘINA. Základy elementární geometrie : pro učitelství 1. stupně ZŠ. 1. vyd. Praha: Státní pedagogické nakladatelství, 1985, 156 s. info
- FRANCOVÁ, Marta a Leni LVOVSKÁ. Texty k základům ELEMENTÁRNÍ GEOMETRIE. 1. vydání. Brno, 2014, 77 s. ISBN 978-80-210-7594-8. info
- Výukové metody
- Přednáška, konzultace.
- Metody hodnocení
- Předmět je ukončen kolokviem. Požadavky ke kolokviu jsou dány osnovou předmětu. Student musí prokázat zvládnutí studovaných pojmů a schopnost jejich aplikace při řešení úloh (včetně elementárních důkazových a planimetrických konstrukčních).
- Informace učitele
- Vhodným doplněním studia témat uvedených v osnově předmětu je registrace a absolvování volitelného předmětu Matematika 5. Jeho obsah je zaměřen na hlubší pochopení a prohloubení studovaných poznatků.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
- Statistika zápisu (podzim 2015, nejnovější)
- Permalink: https://is.muni.cz/predmet/ped/podzim2015/ZS1BK_PGE1