FF:PBM102 Analýza kvant. dat - Informace o předmětu
PBM102 Analýza kvantitativních dat
Filozofická fakultapodzim 2021
- Rozsah
- 1/1/0. 4 kr. Ukončení: z.
- Vyučující
- doc. PhDr. Petr Hlaďo, Ph.D. (přednášející)
doc. Mgr. Martin Sedláček, Ph.D. (přednášející) - Garance
- doc. PhDr. Petr Hlaďo, Ph.D.
Ústav pedagogických věd – Filozofická fakulta
Kontaktní osoba: Mgr. Helena Juřicová
Dodavatelské pracoviště: Ústav pedagogických věd – Filozofická fakulta - Rozvrh
- St 8:00–9:40 B2.33
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
Předmět si smí zapsat nejvýše 15 stud.
Momentální stav registrace a zápisu: zapsáno: 0/15, pouze zareg.: 0/15, pouze zareg. s předností (mateřské obory): 0/15 - Mateřské obory/plány
- Sociální pedagogika a poradenství (program FF, N-SOPP_) (2)
- Cíle předmětu
- Cílem kurzu je přiblížit studentům metody statistické analýzy dat získaných v kvantitativním výzkumu (survey). Studenti seznámí především se způsoby práce se statistickými soubory a proměnnými, testování hypotéz a základy tvorby modelů.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- vytvořit ve statistickém softwaru datovou matici, operace se soubory, transformace dat uložených v jiném tvaru, vytváření nových proměnných, výběr případů;
- rozložit kategorizovaná i spojitá data a s charakteristikami tohoto rozložení - univariační analýza;
- porovnávat rozložení dat a středních hodnot těchto rozložení: t-test, analýza variancí;
- aplikovat inferenční statistiky a testování statistických hypotéz tyto postupy na výzkumné problémy;
- hledat vztahy mezi proměnnými a posouzením síly těchto vztahů - bivariační analýza pomocí kontingenčních tabulek, korelační;
- porozumět lineárním vztahům mezi spojitými proměnnými: lineární regrese
- porozumět redukcí dat pomocí faktorové analýzy jako pokus identifikovat faktory vysvětlující vyšší korelace mezi určitými proměnnými (základy multivariační analýzy)
- kriticky posoudit výzkumné zprávy založené na statistickém zpracování dat. - Osnova
- 0. Základní strategie analýzy: výzkumný problém, výzkumné otázky a proměnné;
- 1. Povaha hromadných dat a logika survey. Práce s hromadnými daty před jejich analýzou (modul files: procedury ), práce s prostředím (moduly edit, view, utilities) a výstupy z analýzy (režim output);
- 2. Rozložení kategorizovaných: základy univariační analýzy (třídění i. Stupně - procedura descriptive statistics - frequencies);
- 3. Rozložení spojitých dat: základy univariační analýzy (procedury descriptive statistics - frequencies, descriptives a explore);
- 4. Umělé proměnné (modul transform, procedury recode, compute, count, rank cases);
- 5. Normální rozložení a základy testování hypotéz. Statistická inference aneb zobecňování výsledků z výběrového na základní soubor;
- 6. Srovnávání skupin na základě středních hodnot jejich kardinálních charakteristik (procedura means). Hypotéza o shodě dvou průměrů pro nezávislá data: t-testy (procedura compare means - means; one-sample t-test; independent-samples t-test);
- 7. Jak testovat nulovou hypotézu o shodě několika populačních průměrů (procedura compare means - one-way anova);
- 8. Základy bivariační analýzy: rozložení dat v kontingenční tabulce - povaha vztahu mezi hodnotami proměnných a porovnávání pozorovaných s očekávanými četnostmi;
- 9. Měření (síly) asociace mezi 2 kategorizovanými proměnnými: koeficienty asociace (procedura crosstabs). Měření (síly) asociace mezi dvěma spojitými proměnnými: korelační koeficienty a grafy - scatterplots (modul graphs - scatter) a korelační matice (procedura correlate - bivariate);
- 10. Jak odhalit vliv třetí proměnné: práce s podsoubory neboli třídění vyšších stupňů a parciální koeficienty (procedura correlate - partial);
- Literatura
- povinná literatura
- SOUKUP, Petr a Ladislav RABUŠIC. Několik poznámek k jedné obsesi českých sociálních věd, statistické významnosti. Sociologický časopis/ Czech Sociological Review. Praha: Sociologický ústav AV ČR, 2007, roč. 43, č. 2, s. 379-395. ISSN 0038-0288. info
- MUIJS, Daniel. Doing quantitative research in education with SPSS. 2nd ed. Los Angeles: SAGE, 2011, xv, 247. ISBN 9781849203241. info
- doporučená literatura
- RABUŠIC, Ladislav a Marie TRAXLEROVÁ. Jak měřit bezmocnost. Data a výzkum. Praha: Sociologický ústav ČAV, 2008, roč. 2, č. 1, s. 7-29. ISSN 1802-8152. info
- ANDĚL, J. Základy matematické statistiky. Praha: MFF UK, 2005. info
- neurčeno
- HENDL, Jan. Přehled statistických metod zpracování dat :analýza a metaanalýza dat. Vyd. 1. Praha: Portál, 2004, 583 s. ISBN 8071788201. info
- FIELD, Andy. Discovering Statistics Using IBM SPSS Statistics. 5th. Sage Publishing, 2017. ISBN 978-1-5264-4578-0. URL info
- MAREŠ, Petr, Ladislav RABUŠIC a Petr SOUKUP. Analýza sociálněvědních dat (nejen) v SPSS. První. Brno: Masarykova univerzita, 2015, 508 s. ISBN 978-80-210-6362-4. info
- BABBIE, Earl R. Adventures in social research : data analysis using IBM SPSS statistics. 8th ed. Los Angeles: Sage, 2013, xxiii, 456. ISBN 9781452205588. info
- Výukové metody
- Kurz je veden v přednáškové i seminární formě. V rámci kurzu studenti pracují na skupinových projektech.
- Metody hodnocení
- písemný test - zpracování statistického problému za použití software (Statistica), interpretace výsledků !!!
- Informace učitele
- https://elf.phil.muni.cz/elf3/course/view.php?id=362
- Další komentáře
- Studijní materiály
Předmět je vyučován každý semestr.
- Statistika zápisu (podzim 2021, nejnovější)
- Permalink: https://is.muni.cz/predmet/phil/podzim2021/PBM102