Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2024
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- Mgr. Tibor Botka, Ph.D. (lecturer)
- Guaranteed by
- Mgr. Tibor Botka, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Tibor Botka, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Tue 9:00–10:50 B11/305
- Prerequisites
- Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 45/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 12 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Learning outcomes
- Student will be able to:
- explain the main molecular biological properties of bacterial viruses;
- explain the main molecular biological properties of animal and giant viruses;
- explain the main molecular biological properties of plant viruses;
- describe the molecular basis of cellular parasitism of viruses;
- compare and highlight differences in the process of reproduction of different types of viruses;
- to analyze current scientific knowledges in the field of virology;
- write an article on the importance of viruses in medical practice; - Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- recommended literature
- SNUSTAD, D. Peter and Michael J. SIMMONS. Genetika. Translated by Jiřina Relichová. Druhé, aktualizované vydá. Brno: Masarykova univerzita, 2017, xix, 844. ISBN 9788021086135. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Třetí inovované vydání. Brno, 2000, 300 pp. Díl III. Molekulární biologie virů. ISBN 80-902562-2-8. URL info
- ROSYPAL, Stanislav, Jiří DOŠKAŘ, Karel PETRZIK and Vladislava RŮŽIČKOVÁ. Úvod do molekulární biologie IV. Molekulární biologie rostlinných virů, Priony, Molekulkární evoluce, Vznik života, Metody molekulární biologie, Genové inženýrství (Introduction to molecular biology IV.). Třetí inovované vydání. Brno: Rosypal S., Grafex, 2002, 300 pp. Díl čtvrtý. ISBN 80-902562-4-4. info
- Racaniello, V.R., Rall, G.F. (2020). Principles of Virology, Volume 1. American Society for Microbiology.608. ISBN 9781683672845.
- CARTER, John B. and Venetia A. SAUNDERS. Virology : principles and applications. 2nd ed. Chichester: Wiley, 2013, xxix, 364. ISBN 9781119991434. info
- FLINT, S. Jane. Principles of virology. 3rd ed. Washington, DC: ASM Press, 2009, xxii, 569. ISBN 9781555814793. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2023
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Tibor Botka, Ph.D. (lecturer)
prof. RNDr. Roman Pantůček, Ph.D. (lecturer) - Guaranteed by
- prof. RNDr. Roman Pantůček, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Tibor Botka, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Tue 9:00–10:50 B11/305
- Prerequisites
- Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 41/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 12 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Learning outcomes
- Student will be able to:
- explain the main molecular biological properties of bacterial viruses;
- explain the main molecular biological properties of animal and giant viruses;
- explain the main molecular biological properties of plant viruses;
- describe the molecular basis of cellular parasitism of viruses;
- compare and highlight differences in the process of reproduction of different types of viruses;
- to analyze current scientific knowledges in the field of virology;
- write an article on the importance of viruses in medical practice; - Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- recommended literature
- SNUSTAD, D. Peter and Michael J. SIMMONS. Genetika. Translated by Jiřina Relichová. Druhé, aktualizované vydá. Brno: Masarykova univerzita, 2017, xix, 844. ISBN 9788021086135. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Třetí inovované vydání. Brno, 2000, 300 pp. Díl III. Molekulární biologie virů. ISBN 80-902562-2-8. URL info
- ROSYPAL, Stanislav, Jiří DOŠKAŘ, Karel PETRZIK and Vladislava RŮŽIČKOVÁ. Úvod do molekulární biologie IV. Molekulární biologie rostlinných virů, Priony, Molekulkární evoluce, Vznik života, Metody molekulární biologie, Genové inženýrství (Introduction to molecular biology IV.). Třetí inovované vydání. Brno: Rosypal S., Grafex, 2002, 300 pp. Díl čtvrtý. ISBN 80-902562-4-4. info
- Racaniello, V.R., Rall, G.F. (2020). Principles of Virology, Volume 1. American Society for Microbiology.608. ISBN 9781683672845.
- CARTER, John B. and Venetia A. SAUNDERS. Virology : principles and applications. 2nd ed. Chichester: Wiley, 2013, xxix, 364. ISBN 9781119991434. info
- FLINT, S. Jane. Principles of virology. 3rd ed. Washington, DC: ASM Press, 2009, xxii, 569. ISBN 9781555814793. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2022
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Tibor Botka, Ph.D. (lecturer)
- Guaranteed by
- Mgr. Tibor Botka, Ph.D.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Tibor Botka, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 14:00–15:50 B11/305
- Prerequisites
- Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 17/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 11 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Learning outcomes
- Student will be able to:
- explain the main molecular biological properties of bacterial viruses;
- explain the main molecular biological properties of animal and giant viruses;
- explain the main molecular biological properties of plant viruses;
- describe the molecular basis of cellular parasitism of viruses;
- compare and highlight differences in the process of reproduction of different types of viruses;
- to analyze current scientific knowledges in the field of virology;
- write an article on the importance of viruses in medical practice; - Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- recommended literature
- SNUSTAD, D. Peter and Michael J. SIMMONS. Genetika. Translated by Jiřina Relichová. Druhé, aktualizované vydá. Brno: Masarykova univerzita, 2017, xix, 844. ISBN 9788021086135. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Třetí inovované vydání. Brno, 2000, 300 pp. Díl III. Molekulární biologie virů. ISBN 80-902562-2-8. URL info
- ROSYPAL, Stanislav, Jiří DOŠKAŘ, Karel PETRZIK and Vladislava RŮŽIČKOVÁ. Úvod do molekulární biologie IV. Molekulární biologie rostlinných virů, Priony, Molekulkární evoluce, Vznik života, Metody molekulární biologie, Genové inženýrství (Introduction to molecular biology IV.). Třetí inovované vydání. Brno: Rosypal S., Grafex, 2002, 300 pp. Díl čtvrtý. ISBN 80-902562-4-4. info
- Racaniello, V.R., Rall, G.F. (2020). Principles of Virology, Volume 1. American Society for Microbiology.608. ISBN 9781683672845.
- CARTER, John B. and Venetia A. SAUNDERS. Virology : principles and applications. 2nd ed. Chichester: Wiley, 2013, xxix, 364. ISBN 9781119991434. info
- FLINT, S. Jane. Principles of virology. 3rd ed. Washington, DC: ASM Press, 2009, xxii, 569. ISBN 9781555814793. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of Scienceautumn 2021
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
Mgr. Tibor Botka, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 10:00–11:50 B11/306
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 1/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 11 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Learning outcomes
- Student will be able to:
- explain the main molecular biological properties of bacterial viruses;
- explain the main molecular biological properties of animal and giant viruses;
- explain the main molecular biological properties of plant viruses;
- describe the molecular basis of cellular parasitism of viruses;
- compare and highlight differences in the process of reproduction of different types of viruses;
- to analyze current scientific knowledges in the field of virology;
- write an article on the importance of viruses in medical practice; - Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- recommended literature
- SNUSTAD, D. Peter and Michael J. SIMMONS. Genetika. Translated by Jiřina Relichová. Druhé, aktualizované vydá. Brno: Masarykova univerzita, 2017, xix, 844. ISBN 9788021086135. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Třetí inovované vydání. Brno, 2000, 300 pp. Díl III. Molekulární biologie virů. ISBN 80-902562-2-8. URL info
- ROSYPAL, Stanislav, Jiří DOŠKAŘ, Karel PETRZIK and Vladislava RŮŽIČKOVÁ. Úvod do molekulární biologie IV. Molekulární biologie rostlinných virů, Priony, Molekulkární evoluce, Vznik života, Metody molekulární biologie, Genové inženýrství (Introduction to molecular biology IV.). Třetí inovované vydání. Brno: Rosypal S., Grafex, 2002, 300 pp. Díl čtvrtý. ISBN 80-902562-4-4. info
- Racaniello, V.R., Rall, G.F. (2020). Principles of Virology, Volume 1. American Society for Microbiology.608. ISBN 9781683672845.
- CARTER, John B. and Venetia A. SAUNDERS. Virology : principles and applications. 2nd ed. Chichester: Wiley, 2013, xxix, 364. ISBN 9781119991434. info
- FLINT, S. Jane. Principles of virology. 3rd ed. Washington, DC: ASM Press, 2009, xxii, 569. ISBN 9781555814793. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2020
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
Mgr. Tibor Botka, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 10:00–11:50 prace doma
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 2/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 11 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Learning outcomes
- Student will be able to:
- explain the main molecular biological properties of bacterial viruses;
- explain the main molecular biological properties of animal and giant viruses;
- explain the main molecular biological properties of plant viruses;
- describe the molecular basis of cellular parasitism of viruses;
- compare and highlight differences in the process of reproduction of different types of viruses;
- to analyze current scientific knowledges in the field of virology;
- write an article on the importance of viruses in medical practice; - Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- required literature
- Přehled literatury je dostupný u vyučujícího
- recommended literature
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- not specified
- Antti Vaheri1, et al. 2013. Uncovering the mysteries of hantavirus infections . NATURE REVIEWS | MICROBIOLOGY VOLUME 11, 539
- George P. C. Salmond and Peter C. Fineran: 2015. A century of the phage: past, present and future. NATURE REVIEWS | MICROBIOLOGY VOLUME 13, 777.
- J. Lindsay Whitton, Christopher T. Cornell and Ralph Feuer. 2005 HOST AND VIRUS DETERMINANTS OF PICORNAVIRUS PATHOGENESIS AND TROPISM. NATURE REVIEWS | MICROBIOLOGY VOLUME 3, 765.
- Jeroen De Smet, et al. 2017. Pseudomonas predators:understanding and exploiting phage–host interactions. NATURE REVIEWS | MICROBIOLOGY VOLUME 15, 517.
- Chantal Abergel et al. 2015. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiology Reviews, fuv037, 39, 779–796.
- ROHWER, Forest, Merry YOULE, Heather MAUGHAN and Nao HISAKAWA. Life in our phage world : centennial field guide to the Earth's most diverse inhabitants. Illustrated by Leah L. Pantéa - Ben Darby. First edition. San Diego: Wholon, 2014, xviii, 382. ISBN 9780990494300. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2019
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
Mgr. Tibor Botka, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 10:00–11:50 B11/306
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 11 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Learning outcomes
- Student will be able to:
- explain the main molecular biological properties of bacterial viruses;
- explain the main molecular biological properties of animal and giant viruses;
- explain the main molecular biological properties of plant viruses;
- describe the molecular basis of cellular parasitism of viruses;
- compare and highlight differences in the process of reproduction of different types of viruses;
- to analyze current scientific knowledges in the field of virology;
- write an article on the importance of viruses in medical practice; - Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- required literature
- Přehled literatury je dostupný u vyučujícího
- recommended literature
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- not specified
- Antti Vaheri1, et al. 2013. Uncovering the mysteries of hantavirus infections . NATURE REVIEWS | MICROBIOLOGY VOLUME 11, 539
- George P. C. Salmond and Peter C. Fineran: 2015. A century of the phage: past, present and future. NATURE REVIEWS | MICROBIOLOGY VOLUME 13, 777.
- J. Lindsay Whitton, Christopher T. Cornell and Ralph Feuer. 2005 HOST AND VIRUS DETERMINANTS OF PICORNAVIRUS PATHOGENESIS AND TROPISM. NATURE REVIEWS | MICROBIOLOGY VOLUME 3, 765.
- Jeroen De Smet, et al. 2017. Pseudomonas predators:understanding and exploiting phage–host interactions. NATURE REVIEWS | MICROBIOLOGY VOLUME 15, 517.
- Chantal Abergel et al. 2015. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiology Reviews, fuv037, 39, 779–796.
- ROHWER, Forest, Merry YOULE, Heather MAUGHAN and Nao HISAKAWA. Life in our phage world : centennial field guide to the Earth's most diverse inhabitants. Illustrated by Leah L. Pantéa - Ben Darby. First edition. San Diego: Wholon, 2014, xviii, 382. ISBN 9780990494300. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2018
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Tibor Botka, Ph.D. (lecturer)
doc. RNDr. Vladislava Růžičková, CSc. (lecturer) - Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 17. 9. to Fri 14. 12. Thu 10:00–11:50 B11/306
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Learning outcomes
- Student will be able to:
- explain the main molecular biological properties of bacterial viruses;
- explain the main molecular biological properties of animal and giant viruses;
- explain the main molecular biological properties of plant viruses;
- describe the molecular basis of cellular parasitism of viruses;
- compare and highlight differences in the process of reproduction of different types of viruses;
- to analyze current scientific knowledges in the field of virology;
- write an article on the importance of viruses in medical practice; - Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- required literature
- Přehled literatury je dostupný u vyučujícího
- recommended literature
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of Scienceautumn 2017
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 18. 9. to Fri 15. 12. Thu 10:00–11:50 B11/306
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Learning outcomes
- Student will be able to:
- explain the main molecular biological properties of bacterial viruses;
- explain the main molecular biological properties of animal and giant viruses;
- explain the main molecular biological properties of plant viruses;
- describe the molecular basis of cellular parasitism of viruses;
- compare and highlight differences in the process of reproduction of different types of viruses;
- to analyze current scientific knowledges in the field of virology;
- write an article on the importance of viruses in medical practice; - Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- required literature
- Přehled literatury je dostupný u vyučujícího
- recommended literature
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2016
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 19. 9. to Sun 18. 12. Thu 10:00–11:50 B11/306
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2015
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 10:00–11:50 B11/306
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2014
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 10:00–11:50 B11/306
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2013
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 16. 9. to Fri 6. 12. Thu 10:00–11:50 B11/306
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eukaryotic viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogens and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viroids are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, terms and definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechanisms of viral persistence and latency 4. Molecular characteristic of viruses of procaryotes 5. Molecular characteristic of viruses of eucaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurrence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the IS.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2012
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 10:00–11:50 B11/306
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eucaryal viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viriods are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the Is.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2011
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Timetable
- Thu 10:00–11:50 B11/306
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- there are 8 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eucaryal viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viriods are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the Is.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2010
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Timetable
- Thu 10:00–11:50 BR3
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- Ecotoxicology (programme PřF, M-BI)
- Molecular Biology and Genetics (programme PřF, M-BI)
- Molecular Biology and Genetics (programme PřF, N-BI)
- General Biology (programme PřF, M-BI, specialization Microbiology)
- General Biology (programme PřF, N-BI, specialization Microbiology)
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eucaryal viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viriods are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the Is.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2009
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Timetable
- Thu 10:00–11:50 BR3
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- Ecotoxicology (programme PřF, M-BI)
- Molecular Biology and Genetics (programme PřF, M-BI)
- Molecular Biology and Genetics (programme PřF, N-BI)
- General Biology (programme PřF, M-BI, specialization Microbiology)
- General Biology (programme PřF, N-BI, specialization Microbiology)
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eucaryal viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viriods are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the Is.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2008
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Timetable
- Thu 10:00–11:50 BR3
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eucaryal viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viriods are also declaimed. After graduation this course, the student should be able to understand the molecular basis of viral vitality and evolution.
- Syllabus
- 1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Assessment methods
- Type of the course: lecture Type of examination: written test including answers to: test questions, graphics,top up and calculation, computation.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2007
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Timetable
- Thu 10:00–11:50 BR3
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- Molecular biology and genetics of bacterial viruses contains morphology and structure of bacterial viruses, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages. Molecular biology and genetics of vertebrate and invertebrate viruses: papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses: caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy and evolution of viruses. Molecular diagnostic of viruses. Prions and viriods. Virus cloning vectors.
- Syllabus
- 1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Assessment methods (in Czech)
- Výuka: přednáška, Zkouška: písemná: testové otázky, grafika, výpočty, doplňování a odpovědi.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2006
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Timetable
- Thu 13:00–14:50 BR2
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- Molecular biology and genetics of bacterial viruses contains morphology and structure of bacterial viruses, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages. Molecular biology and genetics of vertebrate and invertebrate viruses: papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses: caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy and evolution of viruses. Molecular diagnostic of viruses. Prions and viriods. Virus cloning vectors.
- Syllabus
- 1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Assessment methods (in Czech)
- Výuka: přednáška, Zkouška: písemná: testové otázky, grafika, výpočty, doplňování a odpovědi.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2005
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Timetable
- Wed 13:00–14:50 B1,01004
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- Molecular biology and genetics of bacterial viruses contains morphology and structure of bacterial viruses, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages. Molecular biology and genetics of vertebrate and invertebrate viruses: papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses: caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy and evolution of viruses. Molecular diagnostic of viruses. Prions and viriods. Virus cloning vectors.
- Syllabus
- 1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Assessment methods (in Czech)
- Výuka: přednáška, Zkouška: písemná: testové otázky, grafika, výpočty, doplňování a odpovědi.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2004
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Timetable
- Wed 13:00–14:50 B1,01004
- Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- Molecular biology and genetics of bacterial viruses contains morphology and structure of bacterial viruses, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages. Molecular biology and genetics of vertebrate and invertebrate viruses: papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses: caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy and evolution of viruses. Molecular diagnostic of viruses. Prions and viriods. Virus cloning vectors.
- Syllabus
- 1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Assessment methods (in Czech)
- Výuka: přednáška, Zkouška: písemná: testové otázky, grafika, výpočty, doplňování a odpovědi.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2003
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- Molecular biology and genetics of bacterial viruses contains morphology and structure of bacterial viruses, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages. Molecular biology and genetics of vertebrate and invertebrate viruses: papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses: caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy and evolution of viruses. Molecular diagnostic of viruses. Prions and viriods. Virus cloning vectors.
- Syllabus
- 1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Assessment methods (in Czech)
- Výuka: přednáška, Zkouška: písemná: testové otázky, grafika, výpočty, doplňování a odpovědi.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught every week. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2002
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Prerequisites
- Ex_3065 Molekulární biologie || Imp_9115 Molekulární biologie || B3120 Molecular and cell biology || B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- Molecular biology and genetics of bacterial viruses contains morphology and structure of bacterial viruses, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages. Molecular biology and genetics of vertebrate and invertebrate viruses: papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses: caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy and evolution of viruses. Molecular diagnostic of viruses. Prions and viriods. Virus cloning vectors.
- Syllabus
- 1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Assessment methods (in Czech)
- Výuka: přednáška, Zkouška: písemná: testové otázky, grafika, výpočty, doplňování a odpovědi.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught every week. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2011 - acreditation
The information about the term Autumn 2011 - acreditation is not made public
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- Ecotoxicology (programme PřF, M-BI)
- Molecular Biology and Genetics (programme PřF, M-BI)
- Molecular Biology and Genetics (programme PřF, N-BI)
- General Biology (programme PřF, M-BI, specialization Microbiology)
- General Biology (programme PřF, N-BI, specialization Microbiology)
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eucaryal viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viriods are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the Is.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught every week. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2010 - only for the accreditation
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4010 Essential molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 90 student(s).
Current registration and enrolment status: enrolled: 0/90, only registered: 0/90, only registered with preference (fields directly associated with the programme): 0/90 - fields of study / plans the course is directly associated with
- Ecotoxicology (programme PřF, M-BI)
- Molecular Biology and Genetics (programme PřF, M-BI)
- Molecular Biology and Genetics (programme PřF, N-BI)
- General Biology (programme PřF, M-BI, specialization Microbiology)
- General Biology (programme PřF, N-BI, specialization Microbiology)
- Course objectives
- At the end of the course students should be able to distinguish and explain principles of the molecular biology, pathology and evolution of bacterial viruses, animal and plant viruses.
- Syllabus
- Subject Molecular biology of viruses contains theory of molecular genetics of bacterial phages and eucaryal viruses. Morphology and structure of phages, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages are included in part of procaryotic viruses. Molecular biology and genetics of vertebrate and invertebrate viruses concern the papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses is focused on the caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy, evolution of viruses, prions and viriods are also declaimed. After graduation this course, the student should be able to differentiate the molecular basis of viral vitality and evolution.1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Teaching methods
- Lecture is attended by commentated PowerPoint presentations including schemes, diagrams, figures and animated illustrations concerning the topic of the lecture. Study materials are available in the Is.
- Assessment methods
- Lecture is finished by written examination including: test questions, making graphics with commentary and answer the single questions. Graduation of this subject depends on minimally 60% successfulness in written examination and attending on lectures.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught every week. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
Bi7140 Molecular biology of viruses
Faculty of ScienceAutumn 2007 - for the purpose of the accreditation
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vladislava Růžičková, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Vladislava Růžičková, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Vladislava Růžičková, CSc. - Prerequisites
- B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4020 Molecular biology
1.Molecular structure reproduction a function of procaryotic and eucaryotic genome. 2. Basic methods in molecular biology 3. Molecular foundation of acquired immunity. Molecular foundation of cancerogenesis. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- Molecular biology and genetics of bacterial viruses contains morphology and structure of bacterial viruses, infection and lysis of bacterial cells caused by phage virions, adsorption of phage virion to the surface of bacterial cells, synthesis of bacterial viruses in host cell, mutation and recombination of bacteriophage, lysogeny and genetics of temperate phage, general characteristics of some temperate phages. Molecular biology and genetics of vertebrate and invertebrate viruses: papovaviruses, adenoviruses, herpesviruses, poxviruses, parvoviruses, reoviruses, flaviviruses, picornaviruses, togaviruses, arteriviruses, rhabdoviruses, paramyxoviruses, filoviruses, orthomyxoviruses, bunyaviruses, retroviruses, hepadnaviruses. Molecular biology of retroviruses including the virus HIV and HTLV, adenoviruses, herpesviruses, influenzavirus, hepadnaviruses and oncoviruses are given in detail. Molecular biology and genetics of plant viruses: caulimoviruses, geminiviruses, bromoviruses, nepoviruses, tymoviruses, tobamoviruses, tombusviruses, luteoviruses, hordeiviruses, potexviruses etc. Characteristics of main types of plant diseases caused by viruses are explained. Molecular taxonomy and evolution of viruses. Molecular diagnostic of viruses. Prions and viriods. Virus cloning vectors.
- Syllabus
- 1. Molecular characterisation of live noncellular systems, termines a definition explaining the nature molecular biology of viruses 2. Properties of viruses having importance in their molecular classification 3. Life cycle of viruses and the types of viral infections in host organisms, molecular mechnisms of viral persistence and latency 4. Molecular characteristic of viruses of procarytes 5. Molecular characteristic of viruses of ecaryotes i.e. vertebrates, invertebrates, and plants. 6. Molecular characteristic of oncoviruses 7. Molecular basis of occurence of transmissible encephalopathy (TSE) 8. Molecular diagnostics and evolution of viruses.
- Literature
- Přehled literatury je dostupný u vyučujícího
- ROSYPAL, Stanislav. Úvod do molekulární biologie. Díl druhý, (Makromolekulární biologie eukaryot). 3. inovované vyd. Brno: Stanislav Rosypal, 1999, s. 304-600. ISBN 80-902562-1-X. info
- Špeciálna virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Milan Labuda. 1. vyd. Bratislava: Slovac Academic Press, 1998, 226 s., č. ISBN 80-88908-04-3. info
- TIMBURY, Morag C. Notes on medical virology. 11th ed. New York: Churchill Livingstone, 1997, 196 s. ISBN 0-443-05846-6. info
- ROSYPAL, Stanislav. Úvod do molekulární biologie : dodatek. 2. rozš. vyd. Brno: Stanislav Rosypal, 1997, 996 s. info
- Všeobecná virológia. Edited by Jaroslav Žemla - Fedor Čiampor - Jozef Leššo. 1. vyd. Bratislava: Slovac Academic Press, 1995, 238 s., il. ISBN 80-85665-47-6. info
- LEVY, Jay A., Heinz FRAENKEL-CONRAT and Robert A. OWENS. Virology. 3rd ed. Englewood Cliffs: Prentice-Hall, 1994, xii, 447 s. ISBN 0-13-953753-8. info
- CANN, Alan J. Principles of molecular virology. London: Academic Press, 1993, 234 s. ISBN 0-12-158531-X. info
- Assessment methods (in Czech)
- Výuka: přednáška, Zkouška: písemná: testové otázky, grafika, výpočty, doplňování a odpovědi.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught every week. - Teacher's information
- http://orion.sci.muni.cz/kgmb/Student/7140.htm
- Enrolment Statistics (recent)