Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2023
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- doc. Mgr. David Bednář, Ph.D. (seminar tutor)
Mgr. Ondřej Vávra, Ph.D. (assistant)
Mgr. Martina Damborská (assistant)
prof. Mgr. Jiří Damborský, Dr. (seminar tutor)
Mgr. Jana Horáčková (seminar tutor)
MUDr. Jan Mičan (seminar tutor) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. Mgr. David Bednář, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 16:00–17:50 B11/333
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 24 student(s).
Current registration and enrolment status: enrolled: 5/24, only registered: 0/24, only registered with preference (fields directly associated with the programme): 0/24 - Course objectives
- The aim of the course is learning students how to operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of proteins.
- Learning outcomes
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein functi - Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written practical test, 11 exercises awarded 100 points in total, 70 pints are needed to pass.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Předmět se doporučuje zapsat v 1. nebo 3. semestru. - Teacher's information
- http://loschmidt.chemi.muni.cz/sbiol
Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2022
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- doc. Mgr. David Bednář, Ph.D. (seminar tutor)
Mgr. Jan Dvorský, Ph.D. (seminar tutor)
Mgr. Ondřej Vávra, Ph.D. (assistant)
Mgr. Martina Damborská (assistant)
prof. Mgr. Jiří Damborský, Dr. (seminar tutor)
Mgr. Jana Horáčková (seminar tutor)
MUDr. Jan Mičan (seminar tutor) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. Mgr. David Bednář, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 12:00–13:50 B09/316
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 24 student(s).
Current registration and enrolment status: enrolled: 3/24, only registered: 0/24, only registered with preference (fields directly associated with the programme): 0/24 - Course objectives
- The aim of the course is learning students how to operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of proteins.
- Learning outcomes
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein functi - Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written practical test, 11 exercises awarded 100 points in total, 70 pints are needed to pass.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Předmět se doporučuje zapsat v 1. nebo 3. semestru. - Teacher's information
- http://loschmidt.chemi.muni.cz/sbiol
Bi9410c Structural Biology - practice
Faculty of Scienceautumn 2021
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- doc. Mgr. David Bednář, Ph.D. (seminar tutor)
Mgr. Jan Dvorský, Ph.D. (seminar tutor)
Mgr. Ondřej Vávra, Ph.D. (assistant)
Mgr. Martina Damborská (assistant)
prof. Mgr. Jiří Damborský, Dr. (seminar tutor) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. Mgr. David Bednář, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 12:00–13:50 B09/316
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 24 student(s).
Current registration and enrolment status: enrolled: 1/24, only registered: 0/24, only registered with preference (fields directly associated with the programme): 0/24 - Course objectives
- The aim of the course is learning students how to operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of proteins.
- Learning outcomes
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein functi - Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written practical test, 11 exercises awarded 100 points in total, 70 pints are needed to pass.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Předmět se doporučuje zapsat v 1. nebo 3. semestru. - Teacher's information
- http://loschmidt.chemi.muni.cz/sbiol
Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2020
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- doc. Mgr. David Bednář, Ph.D. (seminar tutor)
Mgr. Jan Dvorský, Ph.D. (seminar tutor)
Mgr. Ondřej Vávra, Ph.D. (assistant)
Mgr. Martina Damborská (assistant)
prof. Mgr. Jiří Damborský, Dr. (seminar tutor) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. Mgr. David Bednář, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 12:00–13:50 prace doma
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 24 student(s).
Current registration and enrolment status: enrolled: 0/24, only registered: 0/24, only registered with preference (fields directly associated with the programme): 0/24 - Course objectives
- The aim of the course is learning students how to operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of proteins.
- Learning outcomes
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein functi - Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written practical test, 11 exercises awarded 100 points in total, 70 pints are needed to pass.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Předmět se doporučuje zapsat v 1. nebo 3. semestru. - Teacher's information
- http://loschmidt.chemi.muni.cz/sbiol
Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2019
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- doc. Mgr. David Bednář, Ph.D. (seminar tutor)
Mgr. Jan Dvorský, Ph.D. (seminar tutor)
Mgr. Ondřej Vávra, Ph.D. (assistant)
Mgr. Martina Damborská (assistant)
prof. Mgr. Jiří Damborský, Dr. (seminar tutor) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. Mgr. David Bednář, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 12:00–13:50 B09/316
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 24 student(s).
Current registration and enrolment status: enrolled: 0/24, only registered: 0/24, only registered with preference (fields directly associated with the programme): 0/24 - Course objectives
- The aim of the course is learning students how to operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of proteins.
- Learning outcomes
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein functi - Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written practical test, 11 exercises awarded 100 points in total, 70 pints are needed to pass.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
General note: Předmět se doporučuje zapsat v 1. nebo 3. semestru. - Teacher's information
- http://loschmidt.chemi.muni.cz/sbiol
Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2018
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- doc. Mgr. David Bednář, Ph.D. (seminar tutor)
Mgr. Ondřej Vávra, Ph.D. (seminar tutor) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. Mgr. David Bednář, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 17. 9. to Fri 14. 12. Thu 12:00–13:50 D29/347-RCX2
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 24 student(s).
Current registration and enrolment status: enrolled: 0/24, only registered: 0/24, only registered with preference (fields directly associated with the programme): 0/24 - Course objectives
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein function - Learning outcomes
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein function - Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written practical test, 11 exercises awarded 100 points in total, 70 pints are needed to pass.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- http://loschmidt.chemi.muni.cz/sbiol
Bi9410c Structural Biology - practice
Faculty of Scienceautumn 2017
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- doc. Mgr. David Bednář, Ph.D. (seminar tutor)
Mgr. Eva Šebestová, Ph.D. (seminar tutor)
Mgr. Lukáš Daniel, Ph.D. (assistant) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. Mgr. David Bednář, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 18. 9. to Fri 15. 12. Thu 13:00–14:50 B09/316
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 24 student(s).
Current registration and enrolment status: enrolled: 0/24, only registered: 0/24, only registered with preference (fields directly associated with the programme): 0/24 - Course objectives
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein function - Learning outcomes
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein function - Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written practical test, 11 exercises awarded 100 points in total, 70 pints are needed to pass.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- http://loschmidt.chemi.muni.cz/sbiol
Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2016
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- Mgr. Jan Brezovský, Ph.D. (seminar tutor)
Mgr. Eva Šebestová, Ph.D. (seminar tutor)
doc. Mgr. David Bednář, Ph.D. (assistant)
Mgr. Lukáš Daniel, Ph.D. (assistant) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Jan Brezovský, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 19. 9. to Sun 18. 12. Thu 13:00–14:50 B09/316
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 24 student(s).
Current registration and enrolment status: enrolled: 0/24, only registered: 0/24, only registered with preference (fields directly associated with the programme): 0/24 - Course objectives
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein function - Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written practical test, 11 exercises awarded 100 points in total, 70 pints are needed to pass.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- http://loschmidt.chemi.muni.cz/sbiol
Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2015
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- Mgr. Jan Brezovský, Ph.D. (seminar tutor)
Mgr. Eva Šebestová, Ph.D. (seminar tutor)
doc. Mgr. David Bednář, Ph.D. (assistant)
Mgr. Lukáš Daniel, Ph.D. (assistant) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Jan Brezovský, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 10:00–11:50 B09/316
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 24 student(s).
Current registration and enrolment status: enrolled: 0/24, only registered: 0/24, only registered with preference (fields directly associated with the programme): 0/24 - Course objectives
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein function - Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written practical test, 11 exercises awarded 100 points in total, 70 pints are needed to pass.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- http://loschmidt.chemi.muni.cz/sbiol
Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2014
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- Mgr. Jan Brezovský, Ph.D. (seminar tutor)
Mgr. Eva Šebestová, Ph.D. (seminar tutor)
doc. Mgr. David Bednář, Ph.D. (assistant)
Mgr. Lukáš Daniel, Ph.D. (assistant) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Jan Brezovský, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Wed 18:00–19:50 B09/316
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
The capacity limit for the course is 24 student(s).
Current registration and enrolment status: enrolled: 0/24, only registered: 0/24, only registered with preference (fields directly associated with the programme): 0/24 - Course objectives
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein function - Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written practical test, 11 exercises awarded 100 points in total, 70 pints are needed to pass.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2013
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- Mgr. Jan Brezovský, Ph.D. (seminar tutor)
Mgr. Eva Šebestová, Ph.D. (seminar tutor) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Jan Brezovský, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Mon 16. 9. to Fri 6. 12. Wed 15:00–16:50 B09/316
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- On successful completion of the course, students will be able to:
operate selected freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
visualize structure of biomolecules
identify functionally relevant regions of proteins
predict a structure of proteins and theirs complexes
evaluate an effect of mutation on a protein function - Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written practical test, 11 exercises awarded 100 points in total, 70 pints are needed to pass.
- Language of instruction
- Czech
- Further Comments
- Study Materials
Course is no more offered.
Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2012
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- Mgr. Jan Brezovský, Ph.D. (seminar tutor)
Mgr. Eva Šebestová, Ph.D. (seminar tutor) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Jan Brezovský, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Wed 14:00–15:50 B09/316
- Prerequisites
- NOW( Bi9410 Structural Biology )
Knowledge on the level of basic lectures of biochemistry or molecular biology. - Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will acquire practical understanding of freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
- Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interacions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interacions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interacions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written test
- Language of instruction
- Czech
- Further Comments
- Study Materials
Course is no more offered.
Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2011
The course is not taught in Autumn 2011
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- Mgr. Jan Brezovský, Ph.D. (lecturer)
prof. Mgr. Jiří Damborský, Dr. (lecturer) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Jan Brezovský, Ph.D. - Prerequisites (in Czech)
- ! Bi6901 Structural Biology - practice
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- Students will acquire practical understanding of freely available web servers, programs and databases applicable to the study of structure, dynamics and function of biomacromolecules, interaction of proteins with proteins, nucleic acids and small organic molecules.
- Syllabus
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – deposition, retrieval and evaluation of structures of macromolecules; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Prediction of structure of macromolecular complexes.
- 5. Dynamics of macromolecules – analysis of molecular dynamics and its databases.
- 6. Protein-protein complexes – evaluation of complex, analysis of interacions; databases.
- 7. Protein-DNA complexes – evaluation of complex, analysis of interacions; databases.
- 8. Protein-ligand complexes – evaluation of complex, analysis of interacions; databases.
- 9. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, catalytic amino acids.
- 10. Modification of protein structure – evaluation of effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Teaching methods
- individual practice in computer lab
- Assessment methods
- written test
- Language of instruction
- Czech
- Further Comments
- Course is no more offered.
The course is taught every week.
Bi9410c Structural Biology - practice
Faculty of ScienceAutumn 2011 - acreditation
The information about the term Autumn 2011 - acreditation is not made public
- Extent and Intensity
- 0/2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- Mgr. Jan Brezovský, Ph.D. (lecturer)
prof. Mgr. Jiří Damborský, Dr. (lecturer) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Jan Brezovský, Ph.D. - Prerequisites (in Czech)
- ! Bi6901 Structural Biology - practice
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives (in Czech)
- Cílem cvičení je osvojit si praktické využití volně dostupných webových serverů, programů a databází ke studiu struktury, dynamiky a funkce proteinů, interakcí proteinů s proteiny, nukleovými kyselinami a malými organickými molekulami.
- Syllabus (in Czech)
- 1. Struktura biologických makromolekul – složení, metody stanovení, využití v biologii.
- 2. Databáze experimentálních struktur – depozice, získání a hodnocení struktur makromolekul, strukturní databáze PDB, PDBsum, EDS, NDB.
- 3. Vizualizace struktur – možnosti zobrazení, dostupné programy.
- 4. Modely struktur – databáze modelů, metody hodnoceni kvality modelů, příprava modelů.
- 5. Predikce struktury makromolekulárních komplexů.
- 6. Analýza struktury proteinu – identifikace důležitých regionů: vazebná/aktivní místa, transportní cesty, flexibilní regiony, katalytické aminokyseliny.
- 7. Dynamika makromolekul – analýza dynamiky a její databáze.
- 8. Komplexy protein-protein – hodnocení komplexu, analýza interakcí a jejich databáze.
- 9. Komplexy protein-DNA – hodnocení komplexu, analýza interakcí a jejich databáze.
- 10. Komplexy protein-ligand – hodnocení komplexu, analýza interakcí a jejich databáze.
- 11. Modifikace struktury proteinu – stanovení vlivu mutace na strukturu a funkci proteinu.
- 12. Aplikace strukturní biologie – biologický výzkum, hledání nových léčiv, design biokatalyzátorů.
- Literature
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Teaching methods (in Czech)
- samostatné cvičení v počítačové učebně
- Assessment methods (in Czech)
- písemný test
- Language of instruction
- Czech
- Further Comments
- Course is no more offered.
The course is taught every week.
- Enrolment Statistics (recent)