C8155 Cell signaling
Faculty of ScienceSpring 2025
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- prof. Mgr. Tomáš Kašparovský, Ph.D. (lecturer)
Mgr. Gabriela Ilčíková (assistant) - Guaranteed by
- prof. Mgr. Tomáš Kašparovský, Ph.D.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. Mgr. Tomáš Kašparovský, Ph.D.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Prerequisites (in Czech)
- C4182 Biochemistry II || C3580 Biochemistry || C5720 Biochemistry
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine. Learning outcomes: At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Learning outcomes
- At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. Biochemistry of vision. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. > (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- recommended literature
- KRAUSS, Gerhard. Biochemistry of signal transduction and regulation. 5th, completely rev. ed. Weinheim: Wiley-VCH, 2014, xxviii, 81. ISBN 9783527333660. info
- not specified
- VOET, Donald and Judith G. VOET. Biochemistry. 4th ed. Hoboken, N.J.: John Wiley & Sons, 2011, xxv, 1428. ISBN 9780470917459. info
- Biochemistry & molecular biology of plants. Edited by Bob B. Buchanan - Wilhelm Gruissem - Russell L. Jones. 2nd edition. Chichester: John Wiley & Sons, 2015, xv, 1264. ISBN 9780470714225. info
- Teaching methods
- Series of lectures
- Assessment methods
- Written exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Cell signaling
Faculty of ScienceSpring 2024
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Mgr. Tomáš Kašparovský, Ph.D. (lecturer)
Mgr. Gabriela Ilčíková (assistant) - Guaranteed by
- prof. Mgr. Tomáš Kašparovský, Ph.D.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. Mgr. Tomáš Kašparovský, Ph.D.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Mon 19. 2. to Sun 26. 5. Wed 9:00–10:50 B11/205
- Prerequisites (in Czech)
- C4182 Biochemistry II || C3580 Biochemistry || C5720 Biochemistry
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine. Learning outcomes: At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Learning outcomes
- At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. Biochemistry of vision. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. > (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- recommended literature
- KRAUSS, Gerhard. Biochemistry of signal transduction and regulation. 5th, completely rev. ed. Weinheim: Wiley-VCH, 2014, xxviii, 81. ISBN 9783527333660. info
- not specified
- VOET, Donald and Judith G. VOET. Biochemistry. 4th ed. Hoboken, N.J.: John Wiley & Sons, 2011, xxv, 1428. ISBN 9780470917459. info
- Biochemistry & molecular biology of plants. Edited by Bob B. Buchanan - Wilhelm Gruissem - Russell L. Jones. 2nd edition. Chichester: John Wiley & Sons, 2015, xv, 1264. ISBN 9780470714225. info
- Teaching methods
- Series of lectures
- Assessment methods
- Written exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Cell signaling
Faculty of ScienceSpring 2023
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Mgr. Tomáš Kašparovský, Ph.D. (lecturer)
Mgr. Veronika Farková, Ph.D. (assistant)
Mgr. Gabriela Ilčíková (assistant) - Guaranteed by
- prof. Mgr. Tomáš Kašparovský, Ph.D.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. Mgr. Tomáš Kašparovský, Ph.D.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Wed 9:00–10:50 B11/205
- Prerequisites (in Czech)
- C4182 Biochemistry II || C3580 Biochemistry || C5720 Biochemistry
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- A follow-up lecture course on cell biochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine. Learning outcomes: At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signalling mechanisms engaged in intracellular and intercellular communication; - present their extended knowledge of biomedical aspects of biochemistry.
- Learning outcomes
- At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in plant and animal cells; - analyze the signalling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge of biomedical aspects of biochemistry.
- Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. > (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- recommended literature
- KRAMER, Ijsbrand M. Signal transduction. Third edition. Amsterdam: Academic Press, 2016, xliv, 1078. ISBN 9780123948038. info
- KRAUSS, Gerhard. Biochemistry of signal transduction and regulation. 5th, completely rev. ed. Weinheim: Wiley-VCH, 2014, xxviii, 81. ISBN 9783527333660. info
- VOET, Donald and Judith G. VOET. Biochemistry. 4th ed. Hoboken, N.J.: John Wiley & Sons, 2011, xxv, 1428. ISBN 9780470917459. info
- Biochemistry & molecular biology of plants. Edited by Bob B. Buchanan - Wilhelm Gruissem - Russell L. Jones. 2nd edition. Chichester: John Wiley & Sons, 2015, xv, 1264. ISBN 9780470714225. info
- Teaching methods
- Series of lectures
- Assessment methods
- Written exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Cell signaling
Faculty of ScienceSpring 2022
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Mgr. Tomáš Kašparovský, Ph.D. (lecturer)
Mgr. Gabriela Ilčíková (assistant) - Guaranteed by
- prof. Mgr. Tomáš Kašparovský, Ph.D.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. Mgr. Tomáš Kašparovský, Ph.D.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Wed 9:00–10:50 B11/335
- Prerequisites (in Czech)
- C4182 Biochemistry II || C3580 Biochemistry || C5720 Biochemistry
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine. Learning outcomes: At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Learning outcomes
- At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Syllabus
- 1.ypes of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3.Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. > (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- recommended literature
- KRAUSS, Gerhard. Biochemistry of signal transduction and regulation. 5th, completely rev. ed. Weinheim: Wiley-VCH, 2014, xxviii, 81. ISBN 9783527333660. info
- not specified
- VOET, Donald and Judith G. VOET. Biochemistry. 4th ed. Hoboken, N.J.: John Wiley & Sons, 2011, xxv, 1428. ISBN 9780470917459. info
- Biochemistry & molecular biology of plants. Edited by Bob B. Buchanan - Wilhelm Gruissem - Russell L. Jones. 2nd edition. Chichester: John Wiley & Sons, 2015, xv, 1264. ISBN 9780470714225. info
- Teaching methods
- Series of lectures
- Assessment methods
- Written exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Cell signaling
Faculty of ScienceSpring 2021
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Mgr. Tomáš Kašparovský, Ph.D. (lecturer)
- Guaranteed by
- prof. Mgr. Tomáš Kašparovský, Ph.D.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. Mgr. Tomáš Kašparovský, Ph.D.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Mon 1. 3. to Fri 14. 5. Wed 9:00–10:50 online_BCH1
- Prerequisites (in Czech)
- C4182 Biochemistry II || C3580 Biochemistry || C5720 Biochemistry
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine. Learning outcomes: At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Learning outcomes
- At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Syllabus
- 1.ypes of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3.Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. > (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- recommended literature
- KRAUSS, Gerhard. Biochemistry of signal transduction and regulation. 5th, completely rev. ed. Weinheim: Wiley-VCH, 2014, xxviii, 81. ISBN 9783527333660. info
- not specified
- VOET, Donald and Judith G. VOET. Biochemistry. 4th ed. Hoboken, N.J.: John Wiley & Sons, 2011, xxv, 1428. ISBN 9780470917459. info
- Biochemistry & molecular biology of plants. Edited by Bob B. Buchanan - Wilhelm Gruissem - Russell L. Jones. 2nd edition. Chichester: John Wiley & Sons, 2015, xv, 1264. ISBN 9780470714225. info
- Teaching methods
- Series of lectures
- Assessment methods
- Written exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Cell signaling
Faculty of ScienceSpring 2020
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Mgr. Tomáš Kašparovský, Ph.D. (lecturer)
- Guaranteed by
- prof. Mgr. Tomáš Kašparovský, Ph.D.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. Mgr. Tomáš Kašparovský, Ph.D.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Wed 9:00–10:50 B11/335
- Prerequisites (in Czech)
- C4182 Biochemistry II || C3580 Biochemistry || C5720 Biochemistry
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine. Learning outcomes: At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Learning outcomes
- At the end of the course, students should be able to: - describe the basic biochemical control mechanisms at the molecular level; - explain the main signal transduction pathways occurring in animal cells; - analyze the signaling mechanisms engaged in the intracellular and intercellular communication; - present their extended knowledge on biomedical aspects of biochemistry.
- Syllabus
- 1.ypes of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3.Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. > (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- recommended literature
- KRAUSS, Gerhard. Biochemistry of signal transduction and regulation. 5th, completely rev. ed. Weinheim: Wiley-VCH, 2014, xxviii, 81. ISBN 9783527333660. info
- not specified
- VOET, Donald and Judith G. VOET. Biochemistry. 4th ed. Hoboken, N.J.: John Wiley & Sons, 2011, xxv, 1428. ISBN 9780470917459. info
- Biochemistry & molecular biology of plants. Edited by Bob B. Buchanan - Wilhelm Gruissem - Russell L. Jones. 2nd edition. Chichester: John Wiley & Sons, 2015, xv, 1264. ISBN 9780470714225. info
- Teaching methods
- Series of lectures
- Assessment methods
- Written exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Cell signaling
Faculty of ScienceSpring 2019
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Mgr. Tomáš Kašparovský, Ph.D. (lecturer)
RNDr. Jitka Kašparovská, Ph.D. (assistant)
Mgr. et Mgr. Natálie Nádeníčková (assistant) - Guaranteed by
- prof. Mgr. Tomáš Kašparovský, Ph.D.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. Mgr. Tomáš Kašparovský, Ph.D.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Mon 18. 2. to Fri 17. 5. Wed 9:00–10:50 B11/335
- Prerequisites (in Czech)
- C4182 Biochemistry II || C3580 Biochemistry || C5720 Biochemistry
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- Cell signaling. A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine.
Learning outcomes:
At the end of the course, students should be able to:
- describe the basic biochemical control mechanisms at the molecular level;
- explain the main signal transduction pathways occurring in animal cells;
- analyze the signaling mechanisms engaged in the intracellular and intercellular communication;
- present their extended knowledge on biomedical aspects of biochemistry. - Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- recommended literature
- KRAUSS, Gerhard. Biochemistry of signal transduction and regulation. 5th, completely rev. ed. Weinheim: Wiley-VCH, 2014, xxviii, 81. ISBN 9783527333660. info
- not specified
- VOET, Donald and Judith G. VOET. Biochemistry. 4th ed. Hoboken, N.J.: John Wiley & Sons, 2011, xxv, 1428. ISBN 9780470917459. info
- Biochemistry & molecular biology of plants. Edited by Bob B. Buchanan - Wilhelm Gruissem - Russell L. Jones. 2nd edition. Chichester: John Wiley & Sons, 2015, xv, 1264. ISBN 9780470714225. info
- Teaching methods
- Series of lectures
- Assessment methods
- Written exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Cell signaling
Faculty of Sciencespring 2018
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Mgr. Tomáš Kašparovský, Ph.D. (lecturer)
RNDr. Jitka Kašparovská, Ph.D. (assistant) - Guaranteed by
- prof. RNDr. Zdeněk Glatz, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. Mgr. Tomáš Kašparovský, Ph.D.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Fri 9:00–10:50 B11/305
- Prerequisites (in Czech)
- C4182 Biochemistry II || C3580 Biochemistry || C5720 Biochemistry
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- Cell signaling. A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine.
Learning outcomes:
At the end of the course, students should be able to:
- describe the basic biochemical control mechanisms at the molecular level;
- explain the main signal transduction pathways occurring in animal cells;
- analyze the signaling mechanisms engaged in the intracellular and intercellular communication;
- present their extended knowledge on biomedical aspects of biochemistry. - Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- recommended literature
- KRAUSS, Gerhard. Biochemistry of signal transduction and regulation. 5th, completely rev. ed. Weinheim: Wiley-VCH, 2014, xxviii, 81. ISBN 9783527333660. info
- not specified
- VOET, Donald and Judith G. VOET. Biochemistry. 4th ed. Hoboken, N.J.: John Wiley & Sons, 2011, xxv, 1428. ISBN 9780470917459. info
- Biochemistry & molecular biology of plants. Edited by Bob B. Buchanan - Wilhelm Gruissem - Russell L. Jones. 2nd edition. Chichester: John Wiley & Sons, 2015, xv, 1264. ISBN 9780470714225. info
- Teaching methods
- Series of lectures
- Assessment methods
- Written exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Dynamic biochemistry II - cellular communication
Faculty of ScienceSpring 2017
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- prof. Mgr. Tomáš Kašparovský, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Zdeněk Glatz, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. Mgr. Tomáš Kašparovský, Ph.D.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Mon 20. 2. to Mon 22. 5. Wed 9:00–10:50 B11/235
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- Dynamic biochemistry II - signaling pathways. A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine.
Learning outcomes:
At the end of the course, students should be able to:
- describe the basic biochemical control mechanisms at the molecular level;
- explain the main signal transduction pathways occurring in animal cells;
- analyze the signaling mechanisms engaged in the intracellular and intercellular communication;
- present their extended knowledge on biomedical aspects of biochemistry. - Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- recommended literature
- KRAUSS, Gerhard. Biochemistry of signal transduction and regulation. 5th, completely rev. ed. Weinheim: Wiley-VCH, 2014, xxviii, 81. ISBN 9783527333660. info
- not specified
- VOET, Donald and Judith G. VOET. Biochemistry. 4th ed. Hoboken, N.J.: John Wiley & Sons, 2011, xxv, 1428. ISBN 9780470917459. info
- Biochemistry & molecular biology of plants. Edited by Bob B. Buchanan - Wilhelm Gruissem - Russell L. Jones. 2nd edition. Chichester: John Wiley & Sons, 2015, xv, 1264. ISBN 9780470714225. info
- Teaching methods
- Series of lectures
- Assessment methods
- Written exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Dynamic biochemistry II - cellular communication
Faculty of ScienceSpring 2016
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Mon 9:00–10:50 C05/114
- Prerequisites
- Could be registered in the 4th, 6th, 8th semester
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- Dynamic biochemistry II - signaling pathways. A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine.
Learning outcomes:
At the end of the course, students should be able to:
- describe the basic biochemical control mechanisms at the molecular level;
- explain the main signal transduction pathways occurring in animal cells;
- analyze the signaling mechanisms engaged in the intracellular and intercellular communication;
- present their extended knowledge on biomedical aspects of biochemistry. - Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- required literature
- Ca. 200 blan k dispozici u přednášejícího.
- recommended literature
- KRAUSS, Gerhard. Biochemistry of Signal Transduction and Regulation. 4th enlarged ed. Weinheim: WILEY-VCH Verlag GmbH, 2008, 626 pp. ISBN 978-3-527-31397-6. info
- not specified
- Biochemistry. Edited by Donald Voet - Judith G. Voet. 3rd ed. Hoboken, N.J.: John Wiley & Sons, 2004, xv, 1591 s. ISBN 0-471-41761-0. info
- BERG, J.M., J.L. TYMOCZKO and L. STRYER. Biochemistry. 5th. New York: W.H. Freeman and Company, 2002, 974 pp. ISBN 0-7167-4684-0. info
- NELSON, D.L. and M.M. COX. Lehninger Principles of Biochemistry. 3rd. New York: Worth Publishers, 2000, 1152 pp. ISBN 1-57259-153-6. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- Teaching methods
- Series of lectures
- Assessment methods
- Lectures, abundantly documented with charts, diagrams, formulas and figures, which are offered to the students for making copies. Oral examination; 40 specified questions are at disposal.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Dynamic biochemistry II - cellular communication
Faculty of ScienceSpring 2015
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Thu 9:00–10:50 C05/114
- Prerequisites
- Could be registered in the 4th, 6th, 8th semester
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- Dynamic biochemistry II - signaling pathways. A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine.
Learning outcomes:
At the end of the course, students should be able to:
- describe the basic biochemical control mechanisms at the molecular level;
- explain the main signal transduction pathways occurring in animal cells;
- analyze the signaling mechanisms engaged in the intracellular and intercellular communication;
- present their extended knowledge on biomedical aspects of biochemistry. - Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- required literature
- Ca. 200 blan k dispozici u přednášejícího.
- recommended literature
- KRAUSS, Gerhard. Biochemistry of Signal Transduction and Regulation. 4th enlarged ed. Weinheim: WILEY-VCH Verlag GmbH, 2008, 626 pp. ISBN 978-3-527-31397-6. info
- not specified
- Biochemistry. Edited by Donald Voet - Judith G. Voet. 3rd ed. Hoboken, N.J.: John Wiley & Sons, 2004, xv, 1591 s. ISBN 0-471-41761-0. info
- BERG, J.M., J.L. TYMOCZKO and L. STRYER. Biochemistry. 5th. New York: W.H. Freeman and Company, 2002, 974 pp. ISBN 0-7167-4684-0. info
- NELSON, D.L. and M.M. COX. Lehninger Principles of Biochemistry. 3rd. New York: Worth Publishers, 2000, 1152 pp. ISBN 1-57259-153-6. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- Teaching methods
- Series of lectures
- Assessment methods
- Lectures, abundantly documented with charts, diagrams, formulas and figures, which are offered to the students for making copies. Oral examination; 40 specified questions are at disposal.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Dynamic biochemistry II - cellular communication
Faculty of ScienceSpring 2014
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Fri 10:00–11:50 C05/114
- Prerequisites
- Could be registered in the 4th, 6th, 8th semester
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- Dynamic biochemistry II - signaling pathways. A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine.
Learning outcomes:
At the end of the course, students should be able to:
- describe the basic biochemical control mechanisms at the molecular level;
- explain the main signal transduction pathways occurring in animal cells;
- analyze the signaling mechanisms engaged in the intracellular and intercellular communication;
- present their extended knowledge on biomedical aspects of biochemistry. - Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- required literature
- Ca. 200 blan k dispozici u přednášejícího.
- recommended literature
- KRAUSS, Gerhard. Biochemistry of Signal Transduction and Regulation. 4th enlarged ed. Weinheim: WILEY-VCH Verlag GmbH, 2008, 626 pp. ISBN 978-3-527-31397-6. info
- not specified
- Biochemistry. Edited by Donald Voet - Judith G. Voet. 3rd ed. Hoboken, N.J.: John Wiley & Sons, 2004, xv, 1591 s. ISBN 0-471-41761-0. info
- BERG, J.M., J.L. TYMOCZKO and L. STRYER. Biochemistry. 5th. New York: W.H. Freeman and Company, 2002, 974 pp. ISBN 0-7167-4684-0. info
- NELSON, D.L. and M.M. COX. Lehninger Principles of Biochemistry. 3rd. New York: Worth Publishers, 2000, 1152 pp. ISBN 1-57259-153-6. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- Teaching methods
- Series of lectures
- Assessment methods
- Lectures, abundantly documented with charts, diagrams, formulas and figures, which are offered to the students for making copies. Oral examination; 40 specified questions are at disposal.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Dynamic biochemistry II - cellular communication
Faculty of ScienceSpring 2013
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Timetable
- Tue 11:00–12:50 B11/235
- Prerequisites
- Could be registered in the 4th, 6th, 8th semester
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- Dynamic biochemistry II - signaling pathways. A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine.
Learning outcomes:
At the end of the course, students should be able to:
- describe the basic biochemical control mechanisms at the molecular level;
- explain the main signal transduction pathways occurring in animal cells;
- analyze the signaling mechanisms engaged in the intracellular and intercellular communication;
- present their extended knowledge on biomedical aspects of biochemistry. - Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- required literature
- Ca. 200 blan k dispozici u přednášejícího.
- recommended literature
- KRAUSS, Gerhard. Biochemistry of Signal Transduction and Regulation. 4th enlarged ed. Weinheim: WILEY-VCH Verlag GmbH, 2008, 626 pp. ISBN 978-3-527-31397-6. info
- not specified
- Biochemistry. Edited by Donald Voet - Judith G. Voet. 3rd ed. Hoboken, N.J.: John Wiley & Sons, 2004, xv, 1591 s. ISBN 0-471-41761-0. info
- BERG, J.M., J.L. TYMOCZKO and L. STRYER. Biochemistry. 5th. New York: W.H. Freeman and Company, 2002, 974 pp. ISBN 0-7167-4684-0. info
- NELSON, D.L. and M.M. COX. Lehninger Principles of Biochemistry. 3rd. New York: Worth Publishers, 2000, 1152 pp. ISBN 1-57259-153-6. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- Teaching methods
- Series of lectures
- Assessment methods
- Lectures, abundantly documented with charts, diagrams, formulas and figures, which are offered to the students for making copies. Oral examination; 40 specified questions are at disposal.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Dynamic biochemistry II - cellular communication
Faculty of ScienceSpring 2012
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Prerequisites
- Could be registered in the 4th, 6th, 8th semester
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 24 fields of study the course is directly associated with, display
- Course objectives
- Dynamic biochemistry II - signaling pathways. A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine.
Learning outcomes:
At the end of the course, students should be able to:
- describe the basic biochemical control mechanisms at the molecular level;
- explain the main signal transduction pathways occurring in animal cells;
- analyze the signaling mechanisms engaged in the intracellular and intercellular communication;
- present their extended knowledge on biomedical aspects of biochemistry. - Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- required literature
- Ca. 200 blan k dispozici u přednášejícího.
- recommended literature
- KRAUSS, Gerhard. Biochemistry of Signal Transduction and Regulation. 4th enlarged ed. Weinheim: WILEY-VCH Verlag GmbH, 2008, 626 pp. ISBN 978-3-527-31397-6. info
- not specified
- Biochemistry. Edited by Donald Voet - Judith G. Voet. 3rd ed. Hoboken, N.J.: John Wiley & Sons, 2004, xv, 1591 s. ISBN 0-471-41761-0. info
- BERG, J.M., J.L. TYMOCZKO and L. STRYER. Biochemistry. 5th. New York: W.H. Freeman and Company, 2002, 974 pp. ISBN 0-7167-4684-0. info
- NELSON, D.L. and M.M. COX. Lehninger Principles of Biochemistry. 3rd. New York: Worth Publishers, 2000, 1152 pp. ISBN 1-57259-153-6. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- Teaching methods
- Series of lectures
- Assessment methods
- Lectures, abundantly documented with charts, diagrams, formulas and figures, which are offered to the students for making copies. Oral examination; 40 specified questions are at disposal.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
The course is taught every week.
Note related to how often the course is taught: blokově.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Dynamic biochemistry II - cellular communication
Faculty of ScienceSpring 2011
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc. - Timetable
- Tue 13:00–14:50 C05/114
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 20 fields of study the course is directly associated with, display
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Dynamic biochemistry II - cellular communication
Faculty of ScienceAutumn 2009
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc. - Prerequisites
- Could be registered in the 3rd, 5th, 7th or 9th semester (after completing Biochemie II)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 21 fields of study the course is directly associated with, display
- Course objectives
- Dynamic biochemistry II - signaling pathways. A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine.
Learning outcomes:
At the end of the course, students should be able to:
- describe the basic biochemical control mechanisms at the molecular level;
- explain the main signal transduction pathways occurring in animal cells;
- analyze the signaling mechanisms engaged in the intracellular and intercellular communication;
- present their extended knowledge on biomedical aspects of biochemistry. - Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- KRAUSS, Gerhard. Biochemistry of Signal Transduction and Regulation. 4th enlarged ed. Weinheim: WILEY-VCH Verlag GmbH, 2008, 626 pp. ISBN 978-3-527-31397-6. info
- HELMREICH, E.J.M. The Biochemistry of Cell Signalling. Oxford: Oxford University Press, 2001, 328 pp. info
- BERG, J.M., J.L. TYMOCZKO and L. STRYER. Biochemistry. 5th. New York: W.H. Freeman and Company, 2002, 974 pp. ISBN 0-7167-4684-0. info
- Biochemistry. Edited by Donald Voet - Judith G. Voet. 3rd ed. Hoboken, N.J.: John Wiley & Sons, 2004, xv, 1591 s. ISBN 0-471-41761-0. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- Ca. 200 blan k dispozici u přednášejícího.
- Teaching methods
- Series of advanced lectures
- Assessment methods
- Lectures, abundantly documented with charts, diagrams, formulas and figures, which are offered to the students for making copies. Oral examination; 36 specified questions are at disposal.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
The course is taught every week.
Note related to how often the course is taught: blokově.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Dynamic biochemistry II - signaling pathways
Faculty of ScienceSpring 2009
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc. - Timetable
- Tue 10:00–11:50 C05/114
- Prerequisites
- Could be registered in the 3rd, 5th, 7th or 9th semester (after completing Biochemie II)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 17 fields of study the course is directly associated with, display
- Course objectives
- Dynamic biochemistry II - signaling pathways. A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine.
Main objectives of the course can be summarized as follows:
to extend the knowledge of the basic biochemical control mechanisms at the molecular level;
to get a view of the main signal transduction pathways occurring in animal cells;
to analyze the signaling mechanisms engaged in the intracellular and intercellular communication;
to learn new information on biomedical aspects of biochemistry.
Overview of basic types of signaling molecules, receptors, effectors, second messengers, and protein kinases. Mechanisms of signal transduction processes mediated by surface receptors and signaling through intracellular receptors. Interaction of different signal transduction pathways in the control of complex physiological processes. - Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- KRAUSS, Gerhard. Biochemistry of Signal Transduction and Regulation. 4th enlarged ed. Weinheim: WILEY-VCH Verlag GmbH, 2008, 626 pp. ISBN 978-3-527-31397-6. info
- HELMREICH, E.J.M. The Biochemistry of Cell Signalling. Oxford: Oxford University Press, 2001, 328 pp. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- STRYER, L. Biochemistry, 4th ed. New York: Freeman and Co., 1995, 1064 pp. info
- VOET, D. and J.G. VOET. Biochemistry, 2nd ed. New York: J. Wiley & Sons, 1995, 1361 pp. info
- Ca. 200 blan k dispozici u přednášejícího.
- Assessment methods
- Lectures, abundantly documented with charts, diagrams, formulas and figures, which are offered to the students for making copies. Oral examination; 36 specified questions are at disposal.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Biochemie buněčných signalizací
Faculty of ScienceSpring 2008
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc. - Timetable
- Wed 8:00–9:50 C05/114
- Prerequisites (in Czech)
- Lze zapsat v 6. nebo 8. semestru po absolvování Biochemie II a zejména v doktorském studiu biochemie, molekulární biologie nebo ostatních chemických a biologických oborů.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 36 fields of study the course is directly associated with, display
- Course objectives
- An advanced lecture for MSc and PhD students of biochemistry and molecular biology or chemistry and general biology. Overview of basic types of signaling molecules, receptors, effectors, second messengers, and protein kinases. Mechanisms of signal transduction processes mediated by surface receptors and signaling through intracellular receptors. Interaction of different signal transduction pathways in the control of complex physiological processes.
- Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues. Determination of hormones concentration by RIA or IRMA. Assessment of receptor parameters). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- HELMREICH, E.J.M. The Biochemistry of Cell Signalling. Oxford: Oxford University Press, 2001, 328 pp. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- STRYER, L. Biochemistry, 4th ed. New York: Freeman and Co., 1995, 1064 pp. info
- VOET, D. and J.G. VOET. Biochemistry, 2nd ed. New York: J. Wiley & Sons, 1995, 1361 pp. info
- Ca. 200 blan k dispozici u přednášejícího.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
C8155 Biochemie buněčných signalizací
Faculty of ScienceSpring 2007
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc. - Timetable
- Wed 15:00–16:50 C04/211
- Prerequisites (in Czech)
- Lze zapsat v 6. nebo 8. semestru po absolvování Biochemie II a zejména v doktorském studiu biochemie, molekulární biologie nebo ostatních chemických a biologických oborů.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 36 fields of study the course is directly associated with, display
- Course objectives
- An advanced lecture for MSc and PhD students of biochemistry and molecular biology or chemistry and general biology. Overview of basic types of signaling molecules, receptors, effectors, second messengers, and protein kinases. Mechanisms of signal transduction processes mediated by surface receptors and signaling through intracellular receptors. Interaction of different signal transduction pathways in the control of complex physiological processes.
- Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues. Determination of hormones concentration by RIA or IRMA. Assessment of receptor parameters). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- HELMREICH, E.J.M. The Biochemistry of Cell Signalling. Oxford: Oxford University Press, 2001, 328 pp. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- STRYER, L. Biochemistry, 4th ed. New York: Freeman and Co., 1995, 1064 pp. info
- VOET, D. and J.G. VOET. Biochemistry, 2nd ed. New York: J. Wiley & Sons, 1995, 1361 pp. info
- Ca. 200 blan k dispozici u přednášejícího.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
C8155 Biochemie buněčných signalizací
Faculty of ScienceSpring 2006
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc. - Timetable
- Tue 10:00–11:50 C02/121
- Prerequisites (in Czech)
- Lze zapsat v 6. nebo 8. semestru po absolvování Biochemie II a zejména v doktorském studiu biochemie, molekulární biologie nebo ostatních chemických a biologických oborů.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 36 fields of study the course is directly associated with, display
- Course objectives
- An advanced lecture for MSc and PhD students of biochemistry and molecular biology or chemistry and general biology. Overview of basic types of signaling molecules, receptors, effectors, second messengers, and protein kinases. Mechanisms of signal transduction processes mediated by surface receptors and signaling through intracellular receptors. Interaction of different signal transduction pathways in the control of complex physiological processes.
- Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues. Determination of hormones concentration by RIA or IRMA. Assessment of receptor parameters). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- HELMREICH, E.J.M. The Biochemistry of Cell Signalling. Oxford: Oxford University Press, 2001, 328 pp. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- STRYER, L. Biochemistry, 4th ed. New York: Freeman and Co., 1995, 1064 pp. info
- VOET, D. and J.G. VOET. Biochemistry, 2nd ed. New York: J. Wiley & Sons, 1995, 1361 pp. info
- Ca. 200 blan k dispozici u přednášejícího.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
C8155 Biochemie buněčných signalizací
Faculty of ScienceSpring 2005
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc. - Timetable
- Wed 8:00–9:50 Cpm,02016
- Prerequisites (in Czech)
- Lze zapsat v 6. nebo 8. semestru po absolvování Biochemie II a zejména v doktorském studiu biochemie, molekulární biologie nebo ostatních chemických a biologických oborů.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 36 fields of study the course is directly associated with, display
- Course objectives
- An advanced lecture for MSc and PhD students of biochemistry and molecular biology or chemistry and general biology. Overview of basic types of signaling molecules, receptors, effectors, second messengers, and protein kinases. Mechanisms of signal transduction processes mediated by surface receptors and signaling through intracellular receptors. Interaction of different signal transduction pathways in the control of complex physiological processes.
- Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues. Determination of hormones concentration by RIA or IRMA. Assessment of receptor parameters). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- HELMREICH, E.J.M. The Biochemistry of Cell Signalling. Oxford: Oxford University Press, 2001, 328 pp. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- STRYER, L. Biochemistry, 4th ed. New York: Freeman and Co., 1995, 1064 pp. info
- VOET, D. and J.G. VOET. Biochemistry, 2nd ed. New York: J. Wiley & Sons, 1995, 1361 pp. info
- Ca. 200 blan k dispozici u přednášejícího.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
C8155 Biochemie buněčných signalizací
Faculty of ScienceSpring 2004
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc. - Prerequisites (in Czech)
- Lze zapsat v 6. nebo 8. semestru po absolvování Biochemie II a zejména v doktorském studiu biochemie, molekulární biologie nebo ostatních chemických a biologických oborů.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 36 fields of study the course is directly associated with, display
- Course objectives
- An advanced lecture for MSc and PhD students of biochemistry and molecular biology or chemistry and general biology. Overview of basic types of signaling molecules, receptors, effectors, second messengers, and protein kinases. Mechanisms of signal transduction processes mediated by surface receptors and signaling through intracellular receptors. Interaction of different signal transduction pathways in the control of complex physiological processes.
- Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues. Determination of hormones concentration by RIA or IRMA. Assessment of receptor parameters). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- HELMREICH, E.J.M. The Biochemistry of Cell Signalling. Oxford: Oxford University Press, 2001, 328 pp. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- STRYER, L. Biochemistry, 4th ed. New York: Freeman and Co., 1995, 1064 pp. info
- VOET, D. and J.G. VOET. Biochemistry, 2nd ed. New York: J. Wiley & Sons, 1995, 1361 pp. info
- Ca. 200 blan k dispozici u přednášejícího.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
The course is taught every week.
C8155 Biochemie buněčných signalizací
Faculty of ScienceSpring 2003
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc. - Prerequisites (in Czech)
- Lze zapsat v 6. nebo 8. semestru po absolvování Biochemie II a zejména v doktorském studiu biochemie, molekulární biologie nebo ostatních chemických a biologických oborů.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 36 fields of study the course is directly associated with, display
- Course objectives
- An advanced lecture for MSc and PhD students of biochemistry and molecular biology or chemistry and general biology. Overview of basic types of signaling molecules, receptors, effectors, second messengers, and protein kinases. Mechanisms of signal transduction processes mediated by surface receptors and signaling through intracellular receptors. Interaction of different signal transduction pathways in the control of complex physiological processes.
- Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues. Determination of hormones concentration by RIA or IRMA. Assessment of receptor parameters). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- HELMREICH, E.J.M. The Biochemistry of Cell Signalling. Oxford: Oxford University Press, 2001, 328 pp. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- STRYER, L. Biochemistry, 4th ed. New York: Freeman and Co., 1995, 1064 pp. info
- VOET, D. and J.G. VOET. Biochemistry, 2nd ed. New York: J. Wiley & Sons, 1995, 1361 pp. info
- Ca. 200 blan k dispozici u přednášejícího.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
The course is taught every week.
C8155 Dynamic biochemistry II - cellular communication
Faculty of Sciencespring 2012 - acreditation
The information about the term spring 2012 - acreditation is not made public
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science - Prerequisites
- Could be registered in the 3rd, 5th, 7th or 9th semester (after completing Biochemie II)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 20 fields of study the course is directly associated with, display
- Course objectives
- Dynamic biochemistry II - signaling pathways. A follow-up lecture course of dynamic biochemistry, pathobiochemistry and biochemical control of complex physiological processes for MSc (and also PhD) and Bc students of biochemistry and molecular biology and also of general biology, chemistry and medicine.
Learning outcomes:
At the end of the course, students should be able to:
- describe the basic biochemical control mechanisms at the molecular level;
- explain the main signal transduction pathways occurring in animal cells;
- analyze the signaling mechanisms engaged in the intracellular and intercellular communication;
- present their extended knowledge on biomedical aspects of biochemistry. - Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- KRAUSS, Gerhard. Biochemistry of Signal Transduction and Regulation. 4th enlarged ed. Weinheim: WILEY-VCH Verlag GmbH, 2008, 626 pp. ISBN 978-3-527-31397-6. info
- HELMREICH, E.J.M. The Biochemistry of Cell Signalling. Oxford: Oxford University Press, 2001, 328 pp. info
- BERG, J.M., J.L. TYMOCZKO and L. STRYER. Biochemistry. 5th. New York: W.H. Freeman and Company, 2002, 974 pp. ISBN 0-7167-4684-0. info
- Biochemistry. Edited by Donald Voet - Judith G. Voet. 3rd ed. Hoboken, N.J.: John Wiley & Sons, 2004, xv, 1591 s. ISBN 0-471-41761-0. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- Ca. 200 blan k dispozici u přednášejícího.
- Teaching methods
- Series of advanced lectures
- Assessment methods
- Lectures, abundantly documented with charts, diagrams, formulas and figures, which are offered to the students for making copies. Oral examination; 36 specified questions are at disposal.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
Note related to how often the course is taught: blokově.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Dynamic biochemistry II - cellular communication
Faculty of ScienceSpring 2011 - only for the accreditation
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 20 fields of study the course is directly associated with, display
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught every week.
Note related to how often the course is taught: blokově.
Information on course enrolment limitations: Při týdenní výuce min. 8 posluchačů, při blokové bez omezení
C8155 Biochemie buněčných signalizací
Faculty of ScienceSpring 2008 - for the purpose of the accreditation
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Stanislav Pavelka, CSc. (lecturer)
- Guaranteed by
- doc. RNDr. Stanislav Pavelka, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: doc. RNDr. Stanislav Pavelka, CSc. - Prerequisites (in Czech)
- Lze zapsat v 6. nebo 8. semestru po absolvování Biochemie II a zejména v doktorském studiu biochemie, molekulární biologie nebo ostatních chemických a biologických oborů.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 36 fields of study the course is directly associated with, display
- Course objectives
- An advanced lecture for MSc and PhD students of biochemistry and molecular biology or chemistry and general biology. Overview of basic types of signaling molecules, receptors, effectors, second messengers, and protein kinases. Mechanisms of signal transduction processes mediated by surface receptors and signaling through intracellular receptors. Interaction of different signal transduction pathways in the control of complex physiological processes.
- Syllabus
- 1. Types of signaling molecules and intercellular signal transduction processes in eukaryots. (Hormones, growth factors, neurotransmitters, cytokines. Endocrine, neurocrine, paracrine, and autocrine communications). 2. Classification of hormones according to the type of receptors and mechanism of their action. (Hierarchical arrangement of the endocrine system. Feedback regulation of the hormone secretion). 3. Metabolism of hormones and basic experimental methods in the study of their actions. (Biosynthesis of peptide and protein hormones. Biosynthesis of the thyroid hormones and their metabolism in tissues. Determination of hormones concentration by RIA or IRMA. Assessment of receptor parameters). 4. Mechanisms of signal transduction mediated by plasma membrane receptors. (Basic types of receptors, effectors, second messengers, and protein kinases. Amplification function of receptor-effector-second messenger-protein kinase cascade). 5. Heterotrimeric G-proteins and their functions. (Mechanism of signal transduction mediated by G-proteins. Basic types of G-proteins, alpha-, beta-, and gamma-subunits. Mechanism of the effects of cholera toxin and pertussis toxin. The use of non-hydrolyzable analogs of GTP in the study of G-proteins function). 6. The most important signal transduction pathways initiated by the interaction of extracellular ligands with the G-protein coupled receptors. (Adenylate cyclase cascade and the mechanism of activation of protein kinase A. Phosphoinositide cascade and activation of protein kinase C). 7. The role of intracellular calcium and calmodulin in signal transduction. (Inositoltrisphosphate and ryanodine receptors. Signaling properties of cADP-ribose. Mechanisms of calcium induced release of calcium). 8. Other signal transduction pathways - guanylate cyclases and NO synthases. 9. Receptor tyrosine kinases (RTKs) and MAP kinase cascade. (Mechanism of action of growth factors receptors. Src and other cytosolic tyrosine kinases. SH2 and SH3 binding domains. MAP kinase cascade). 10. Signaling through intracellular receptors. (Mechanism of action of steroid and thyroid hormone receptors). 11. Super-family of GTPases and their cellular functions. (The GTPase cycle, GNRF and GAP proteins. Comparison of the mechanism of action of the elongation factor EF-Tu and heterotrimeric G-proteins. Ras protein and products of other proto-oncogenes). 12. Adaptation of target cells - desensitization of receptors. "Receptor diseases" - disorders connected with impairments of signal transduction. 13. Convergence, divergence, and crosstalk of diverse signal transduction pathways. 14. Interaction of diverse signal transduction pathways in the regulation of complex physiological processes.
- Literature
- HELMREICH, E.J.M. The Biochemistry of Cell Signalling. Oxford: Oxford University Press, 2001, 328 pp. info
- GARRETT, R.H. and C.M. GRISHAM. Biochemistry, 2nd ed. Fort Worth, Orlando: Saunders College Publ., 1999, 1127 pp. info
- STRYER, L. Biochemistry, 4th ed. New York: Freeman and Co., 1995, 1064 pp. info
- VOET, D. and J.G. VOET. Biochemistry, 2nd ed. New York: J. Wiley & Sons, 1995, 1361 pp. info
- Ca. 200 blan k dispozici u přednášejícího.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
The course is taught every week.
- Enrolment Statistics (recent)