M5170 Matematické programování
Přírodovědecká fakultapodzim 2024
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučováno kontaktně - Vyučující
- doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
- Garance
- doc. Mgr. Petr Zemánek, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 14:00–15:50 M2,01021
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, N-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Statistika a analýza dat (program PřF, N-MA)
- Cíle předmětu
- Absolvováním tohoto předmětu získají studenti základní znalosti v oblasti matematického programování, numerických metod řešení úloh nepodmíněné optimalizace a také konvexní analýzy.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen:
(1) definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi,
(2) formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů,
(3) ovládat efektivní techniky používané v základních oblastech konvexní analýzy,
(4) aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerické metody minimalizace včetně příkladů aplikačního charakteru. - Osnova
- I. Základy konvexní analýzy: Konvexní množiny (základní pojmy, konvexní obaly, oddělování a opěrné nadroviny); Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce); Subgradient a subdiferenciál; Fenchelova transformace; Řešení systémů lineárních a konvexních nerovností
- II. Numerické metody nepodmíněné minimalizace: Jednorozměrná minimalizace (prosté dělení intervalu, půlení intervalu, Fibonacciho metoda, metoda zlatého řezu); Metody hledání volných extrémů (metoda nejrychlejšího spádu, Newtonowa metoda, metoda sdružených gradientů)
- III. Matematické programování: Langrangeův princip (nutné a postačující podmínky optimality, Kuhnovy-Tuckerovy podmínky, základy konvexního programování); Základy teorie duality (Kuhnovy-Tuckerovy vektory, slabá dualita, silná dualita, sedlové body); Závislost řešení na parametrech (věta o obálce; stínová cena)
- Literatura
- povinná literatura
- Petr Zemánek, Optimalizace aneb Když méně je více (učební text), viz https://optimalizace.page.link/ucebni_text
- doporučená literatura
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v Rn. 1. vyd. Brno: Masarykova univerzita, 2005, viii, 185. ISBN 8021039051. info
- HAMALA, Milan. Nelineárne programovanie. 2., dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1976, 240 s. info
- BERTSEKAS, Dimitri P. Convex Optimization Theory. Athena Scientific, 2009, 256 s. ISBN 978-1-886529-31-1. info
- Convex analysis. Edited by R. Tyrrell Rockafellar. Princeton: Princeton University Press, 1970, xviii, 451. ISBN 0691080690. info
- BORWEIN, Jonathan M. a Adrian S. LEWIS. Convex analysis and nonlinear optimization : theory and examples. New York: Springer-Verlag, 2000, x, 273. ISBN 0387989404. info
- SUN, Wenyu a Ya-Xiang YUAN. Optimization Theory and Methods - Nonlinear Programming. New York: Springer, 2006, 687 s. Springer Optimization and Its Applications, Vol. 1. ISBN 978-0-387-24975-9. info
- SUCHAREV, Aleksej Grigor‘jevič, Aleksandr Vasil'jevič TIMOCHOV a Vjačeslav Vasil'jevič FEDOROV. Kurs metodov optimizacii. Moskva: Nauka, 1986, 325 s. info
- Výukové metody
- Přednášky a cvičení (pokud nedojde k dalšímu nucenému lockdownu, výuka bude realizována pouze prezenčně).
- Metody hodnocení
- Pro postoupení ke zkoušce je nutné vypracovat projekt z metod nepodmíněné optimalizace -- podrobnosti naleznete ve studijních materiálech v ISu. Zkouška má písemnou i ústní část.
Podmínky (především ohledně distanční či prezenční formy zkoušky) budou upřesněny podle vývoje epidemiologické situace a platných omezení. - Navazující předměty
- Informace učitele
- Nepodceňujte přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2023
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
- Garance
- doc. Mgr. Petr Zemánek, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 12:00–13:50 M4,01024
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, N-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Statistika a analýza dat (program PřF, N-MA)
- Cíle předmětu
- Absolvováním tohoto předmětu získají studenti základní znalosti v oblasti matematického programování, numerických metod řešení úloh nepodmíněné optimalizace a také konvexní analýzy.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen:
(1) definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi,
(2) formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů,
(3) ovládat efektivní techniky používané v základních oblastech konvexní analýzy,
(4) aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerické metody minimalizace včetně příkladů aplikačního charakteru. - Osnova
- I. Základy konvexní analýzy: Konvexní množiny (základní pojmy, konvexní obaly, oddělování a opěrné nadroviny); Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce); Subgradient a subdiferenciál; Fenchelova transformace; Řešení systémů lineárních a konvexních nerovností
- II. Numerické metody nepodmíněné minimalizace: Jednorozměrná minimalizace (prosté dělení intervalu, půlení intervalu, Fibonacciho metoda, metoda zlatého řezu); Metody hledání volných extrémů (metoda nejrychlejšího spádu, Newtonowa metoda, metoda sdružených gradientů)
- III. Matematické programování: Langrangeův princip (nutné a postačující podmínky optimality, Kuhnovy-Tuckerovy podmínky, základy konvexního programování); Základy teorie duality (Kuhnovy-Tuckerovy vektory, slabá dualita, silná dualita, sedlové body); Závislost řešení na parametrech (věta o obálce; stínová cena)
- Literatura
- povinná literatura
- Petr Zemánek, Optimalizace aneb Když méně je více (učební text), viz https://optimalizace.page.link/ucebni_text
- doporučená literatura
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v Rn. 1. vyd. Brno: Masarykova univerzita, 2005, viii, 185. ISBN 8021039051. info
- HAMALA, Milan. Nelineárne programovanie. 2., dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1976, 240 s. info
- BERTSEKAS, Dimitri P. Convex Optimization Theory. Athena Scientific, 2009, 256 s. ISBN 978-1-886529-31-1. info
- Convex analysis. Edited by R. Tyrrell Rockafellar. Princeton: Princeton University Press, 1970, xviii, 451. ISBN 0691080690. info
- BORWEIN, Jonathan M. a Adrian S. LEWIS. Convex analysis and nonlinear optimization : theory and examples. New York: Springer-Verlag, 2000, x, 273. ISBN 0387989404. info
- SUN, Wenyu a Ya-Xiang YUAN. Optimization Theory and Methods - Nonlinear Programming. New York: Springer, 2006, 687 s. Springer Optimization and Its Applications, Vol. 1. ISBN 978-0-387-24975-9. info
- SUCHAREV, Aleksej Grigor‘jevič, Aleksandr Vasil'jevič TIMOCHOV a Vjačeslav Vasil'jevič FEDOROV. Kurs metodov optimizacii. Moskva: Nauka, 1986, 325 s. info
- Výukové metody
- Přednášky a cvičení (pokud nedojde k dalšímu nucenému lockdownu, výuka bude realizována pouze prezenčně).
- Metody hodnocení
- Pro postoupení ke zkoušce je nutné vypracovat projekt z metod nepodmíněné optimalizace -- podrobnosti naleznete ve studijních materiálech v ISu. Zkouška má písemnou i ústní část.
Podmínky (především ohledně distanční či prezenční formy zkoušky) budou upřesněny podle vývoje epidemiologické situace a platných omezení. - Navazující předměty
- Informace učitele
- Nepodceňujte přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2022
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Roman Šimon Hilscher, DSc. (přednášející)
doc. Mgr. Petr Zemánek, Ph.D. (přednášející) - Garance
- prof. RNDr. Roman Šimon Hilscher, DSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 10:00–11:50 M2,01021
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, N-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Statistika a analýza dat (program PřF, N-MA)
- Cíle předmětu
- Absolvováním tohoto předmětu získají studenti základní znalosti v oblasti matematického programování, numerických metod řešení úloh nepodmíněné optimalizace a také konvexní analýzy.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen:
(1) definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi,
(2) formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů,
(3) ovládat efektivní techniky používané v základních oblastech konvexní analýzy,
(4) aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerické metody minimalizace včetně příkladů aplikačního charakteru. - Osnova
- I. Základy konvexní analýzy: Konvexní množiny (základní pojmy, konvexní obaly, oddělování a opěrné nadroviny); Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce); Subgradient a subdiferenciál; Fenchelova transformace; Řešení systémů lineárních a konvexních nerovností
- II. Numerické metody nepodmíněné minimalizace: Jednorozměrná minimalizace (prosté dělení intervalu, půlení intervalu, Fibonacciho metoda, metoda zlatého řezu); Metody hledání volných extrémů (metoda nejrychlejšího spádu, Newtonowa metoda, metoda sdružených gradientů)
- III. Matematické programování: Langrangeův princip (nutné a postačující podmínky optimality, Kuhnovy-Tuckerovy podmínky, základy konvexního programování); Základy teorie duality (Kuhnovy-Tuckerovy vektory, slabá dualita, silná dualita, sedlové body); Závislost řešení na parametrech (věta o obálce; stínová cena)
- Literatura
- povinná literatura
- Petr Zemánek, Optimalizace aneb Když méně je více (učební text), viz https://optimalizace.page.link/ucebni_text
- doporučená literatura
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v Rn. 1. vyd. Brno: Masarykova univerzita, 2005, viii, 185. ISBN 8021039051. info
- HAMALA, Milan. Nelineárne programovanie. 2., dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1976, 240 s. info
- BERTSEKAS, Dimitri P. Convex Optimization Theory. Athena Scientific, 2009, 256 s. ISBN 978-1-886529-31-1. info
- Convex analysis. Edited by R. Tyrrell Rockafellar. Princeton: Princeton University Press, 1970, xviii, 451. ISBN 0691080690. info
- BORWEIN, Jonathan M. a Adrian S. LEWIS. Convex analysis and nonlinear optimization : theory and examples. New York: Springer-Verlag, 2000, x, 273. ISBN 0387989404. info
- SUN, Wenyu a Ya-Xiang YUAN. Optimization Theory and Methods - Nonlinear Programming. New York: Springer, 2006, 687 s. Springer Optimization and Its Applications, Vol. 1. ISBN 978-0-387-24975-9. info
- SUCHAREV, Aleksej Grigor‘jevič, Aleksandr Vasil'jevič TIMOCHOV a Vjačeslav Vasil'jevič FEDOROV. Kurs metodov optimizacii. Moskva: Nauka, 1986, 325 s. info
- Výukové metody
- Přednášky a cvičení (pokud nedojde k dalšímu nucenému lockdownu, výuka bude realizována pouze prezenčně).
- Metody hodnocení
- Pro postoupení ke zkoušce je nutné vypracovat projekt z metod nepodmíněné optimalizace -- podrobnosti naleznete ve studijních materiálech v ISu. Zkouška má písemnou i ústní část.
Podmínky (především ohledně distanční či prezenční formy zkoušky) budou upřesněny podle vývoje epidemiologické situace a platných omezení. - Navazující předměty
- Informace učitele
- Nepodceňujte přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2021
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
- Garance
- prof. RNDr. Roman Šimon Hilscher, DSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 10:00–11:50 MP2,01014a
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, N-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Statistika a analýza dat (program PřF, N-MA)
- Cíle předmětu
- Absolvováním tohoto předmětu získají studenti základní znalosti v oblasti matematického programování, numerických metod řešení úloh nepodmíněné optimalizace a také konvexní analýzy.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen:
(1) definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi,
(2) formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů,
(3) ovládat efektivní techniky používané v základních oblastech konvexní analýzy,
(4) aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerické metody minimalizace včetně příkladů aplikačního charakteru. - Osnova
- I. Základy konvexní analýzy: Konvexní množiny (základní pojmy, konvexní obaly, oddělování a opěrné nadroviny); Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce); Subgradient a subdiferenciál; Fenchelova transformace; Řešení systémů lineárních a konvexních nerovností
- II. Numerické metody nepodmíněné minimalizace: Jednorozměrná minimalizace (prosté dělení intervalu, půlení intervalu, Fibonacciho metoda, metoda zlatého řezu); Metody hledání volných extrémů (metoda nejrychlejšího spádu, Newtonowa metoda, metoda sdružených gradientů)
- III. Matematické programování: Langrangeův princip (nutné a postačující podmínky optimality, Kuhnovy-Tuckerovy podmínky, základy konvexního programování); Základy teorie duality (Kuhnovy-Tuckerovy vektory, slabá dualita, silná dualita, sedlové body); Závislost řešení na parametrech (věta o obálce; stínová cena)
- Literatura
- doporučená literatura
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v Rn. 1. vyd. Brno: Masarykova univerzita, 2005, viii, 185. ISBN 8021039051. info
- HAMALA, Milan. Nelineárne programovanie. 2., dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1976, 240 s. info
- BERTSEKAS, Dimitri P. Convex Optimization Theory. Athena Scientific, 2009, 256 s. ISBN 978-1-886529-31-1. info
- Convex analysis. Edited by R. Tyrrell Rockafellar. Princeton: Princeton University Press, 1970, xviii, 451. ISBN 0691080690. info
- BORWEIN, Jonathan M. a Adrian S. LEWIS. Convex analysis and nonlinear optimization : theory and examples. New York: Springer-Verlag, 2000, x, 273. ISBN 0387989404. info
- SUN, Wenyu a Ya-Xiang YUAN. Optimization Theory and Methods - Nonlinear Programming. New York: Springer, 2006, 687 s. Springer Optimization and Its Applications, Vol. 1. ISBN 978-0-387-24975-9. info
- SUCHAREV, Aleksej Grigor‘jevič, Aleksandr Vasil'jevič TIMOCHOV a Vjačeslav Vasil'jevič FEDOROV. Kurs metodov optimizacii. Moskva: Nauka, 1986, 325 s. info
- Výukové metody
- Přednášky a cvičení (pokud nedojde k dalšímu nucenému lockdownu, výuka bude realizována pouze prezenčně).
- Metody hodnocení
- Pro postoupení ke zkoušce je nutné vypracovat projekt z metod nepodmíněné optimalizace -- podrobnosti naleznete ve studijních materiálech v ISu. Zkouška má písemnou i ústní část.
Podmínky (především ohledně distanční či prezenční formy zkoušky) budou upřesněny podle vývoje epidemiologické situace a platných omezení. - Navazující předměty
- Informace učitele
- Nepodceňujte přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2020
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
- Garance
- prof. RNDr. Roman Šimon Hilscher, DSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 8:00–9:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, N-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Statistika a analýza dat (program PřF, N-MA)
- Cíle předmětu
- Absolvováním tohoto předmětu získají studenti základní znalosti v oblasti matematického programování, numerických metod řešení úloh nepodmíněné optimalizace a také konvexní analýzy.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen:
(1) definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi,
(2) formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů,
(3) ovládat efektivní techniky používané v základních oblastech konvexní analýzy,
(4) aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerické metody minimalizace včetně příkladů aplikačního charakteru. - Osnova
- I. Základy konvexní analýzy: Konvexní množiny (základní pojmy, konvexní obaly, oddělování a opěrné nadroviny); Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce); Subgradient a subdiferenciál; Fenchelova transformace; Řešení systémů lineárních a konvexních nerovností
- II. Numerické metody nepodmíněné minimalizace: Jednorozměrná minimalizace (prosté dělení intervalu, půlení intervalu, Fibonacciho metoda, metoda zlatého řezu); Metody hledání volných extrémů (metoda nejrychlejšího spádu, Newtonowa metoda, metoda sdružených gradientů)
- III. Matematické programování: Langrangeův princip (nutné a postačující podmínky optimality, Kuhnovy-Tuckerovy podmínky, základy konvexního programování); Základy teorie duality (Kuhnovy-Tuckerovy vektory, slabá dualita, silná dualita, sedlové body); Závislost řešení na parametrech (věta o obálce; stínová cena)
- Literatura
- doporučená literatura
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v Rn. 1. vyd. Brno: Masarykova univerzita, 2005, viii, 185. ISBN 8021039051. info
- HAMALA, Milan. Nelineárne programovanie. 2., dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1976, 240 s. info
- BERTSEKAS, Dimitri P. Convex Optimization Theory. Athena Scientific, 2009, 256 s. ISBN 978-1-886529-31-1. info
- Convex analysis. Edited by R. Tyrrell Rockafellar. Princeton: Princeton University Press, 1970, xviii, 451. ISBN 0691080690. info
- BORWEIN, Jonathan M. a Adrian S. LEWIS. Convex analysis and nonlinear optimization : theory and examples. New York: Springer-Verlag, 2000, x, 273. ISBN 0387989404. info
- SUN, Wenyu a Ya-Xiang YUAN. Optimization Theory and Methods - Nonlinear Programming. New York: Springer, 2006, 687 s. Springer Optimization and Its Applications, Vol. 1. ISBN 978-0-387-24975-9. info
- SUCHAREV, Aleksej Grigor‘jevič, Aleksandr Vasil'jevič TIMOCHOV a Vjačeslav Vasil'jevič FEDOROV. Kurs metodov optimizacii. Moskva: Nauka, 1986, 325 s. info
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Pro postoupení ke zkoušce je nutné vypracovat projekt z metod nepodmíněné optimalizace -- podrobnosti naleznete ve studijních materiálech v ISu. Zkouška má písemnou i ústní část.
Podmínky (především ohledně distanční či prezenční formy zkoušky) budou upřesněny podle vývoje epidemiologické situace a platných omezení. - Navazující předměty
- Informace učitele
- Nepodceňujte přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2019
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
- Garance
- prof. RNDr. Roman Šimon Hilscher, DSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Pá 10:00–11:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, N-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Statistika a analýza dat (program PřF, N-MA)
- Cíle předmětu
- Absolvováním tohoto předmětu získají studenti základní znalosti v oblasti matematického programování, numerických metod řešení úloh nepodmíněné optimalizace a také konvexní analýzy.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen:
(1) definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi,
(2) formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů,
(3) ovládat efektivní techniky používané v základních oblastech konvexní analýzy,
(4) aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerické metody minimalizace včetně příkladů aplikačního charakteru. - Osnova
- I. Základy konvexní analýzy: Konvexní množiny (základní pojmy, konvexní obaly, oddělování a opěrné nadroviny); Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce); Subgradient a subdiferenciál; Fenchelova transformace; Řešení systémů lineárních a konvexních nerovností
- II. Numerické metody nepodmíněné minimalizace: Jednorozměrná minimalizace (prosté dělení intervalu, půlení intervalu, Fibonacciho metoda, metoda zlatého řezu); Metody hledání volných extrémů (metoda nejrychlejšího spádu, Newtonowa metoda, metoda sdružených gradientů)
- III. Matematické programování: Langrangeův princip (nutné a postačující podmínky optimality, Kuhnovy-Tuckerovy podmínky, základy konvexního programování); Základy teorie duality (Kuhnovy-Tuckerovy vektory, slabá dualita, silná dualita, sedlové body); Závislost řešení na parametrech (věta o obálce; stínová cena)
- Literatura
- doporučená literatura
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v Rn. 1. vyd. Brno: Masarykova univerzita, 2005, viii, 185. ISBN 8021039051. info
- HAMALA, Milan. Nelineárne programovanie. 2., dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1976, 240 s. info
- BERTSEKAS, Dimitri P. Convex Optimization Theory. Athena Scientific, 2009, 256 s. ISBN 978-1-886529-31-1. info
- Convex analysis. Edited by R. Tyrrell Rockafellar. Princeton: Princeton University Press, 1970, xviii, 451. ISBN 0691080690. info
- BORWEIN, Jonathan M. a Adrian S. LEWIS. Convex analysis and nonlinear optimization : theory and examples. New York: Springer-Verlag, 2000, x, 273. ISBN 0387989404. info
- SUN, Wenyu a Ya-Xiang YUAN. Optimization Theory and Methods - Nonlinear Programming. New York: Springer, 2006, 687 s. Springer Optimization and Its Applications, Vol. 1. ISBN 978-0-387-24975-9. info
- SUCHAREV, Aleksej Grigor‘jevič, Aleksandr Vasil'jevič TIMOCHOV a Vjačeslav Vasil'jevič FEDOROV. Kurs metodov optimizacii. Moskva: Nauka, 1986, 325 s. info
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Pro postoupení ke zkoušce je nutné vypracovat projekt z metod nepodmíněné optimalizace -- podrobnosti naleznete ve studijních materiálech v ISu. Zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňujte přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2018
- Rozsah
- 2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
- Garance
- prof. RNDr. Roman Šimon Hilscher, DSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 17. 9. až Pá 14. 12. Po 14:00–15:50 M2,01021
- Rozvrh seminárních/paralelních skupin:
M5170/02: Po 17. 9. až Pá 14. 12. Út 15:00–15:50 M3,01023, P. Zemánek - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, N-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Statistika a analýza dat (program PřF, N-MA)
- Cíle předmětu
- Po úspěšném absolvování tohoto kurzu bude student schopen:
(1) definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi,
(2) formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů,
(3) ovládat efektivní techniky používané v základních oblastech konvexní analýzy,
(4) aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerické metody minimalizace včetně příkladů aplikačního charakteru. - Osnova
- I. Základy konvexní analýzy: Konvexní množiny (základní pojmy, konvexní obaly, oddělování a opěrné nadroviny); Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce); Subgradient a subdiferenciál; Fenchelova transformace; Řešení systémů lineárních a konvexních nerovností
- II. Numerické metody nepodmíněné minimalizace: Jednorozměrná minimalizace (prosté dělení intervalu, půlení intervalu, Fibonacciho metoda, metoda zlatého řezu); Metody hledání volných extrémů (metoda nejrychlejšího spádu, Newtonowa metoda, metoda sdružených gradientů)
- III. Matematické programování: Langrangeův princip (nutné a postačující podmínky optimality, Kuhnovy-Tuckerovy podmínky, základy konvexního programování); Základy teorie duality (Kuhnovy-Tuckerovy vektory, slabá dualita, silná dualita, sedlové body); Závislost řešení na parametrech (věta o obálce; stínová cena)
- Literatura
- doporučená literatura
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v Rn. 1. vyd. Brno: Masarykova univerzita, 2005, viii, 185. ISBN 8021039051. info
- HAMALA, Milan. Nelineárne programovanie. 2., dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1976, 240 s. info
- BERTSEKAS, Dimitri P. Convex Optimization Theory. Athena Scientific, 2009, 256 s. ISBN 978-1-886529-31-1. info
- Convex analysis. Edited by R. Tyrrell Rockafellar. Princeton: Princeton University Press, 1970, xviii, 451. ISBN 0691080690. info
- BORWEIN, Jonathan M. a Adrian S. LEWIS. Convex analysis and nonlinear optimization : theory and examples. New York: Springer-Verlag, 2000, x, 273. ISBN 0387989404. info
- SUN, Wenyu a Ya-Xiang YUAN. Optimization Theory and Methods - Nonlinear Programming. New York: Springer, 2006, 687 s. Springer Optimization and Its Applications, Vol. 1. ISBN 978-0-387-24975-9. info
- SUCHAREV, Aleksej Grigor‘jevič, Aleksandr Vasil'jevič TIMOCHOV a Vjačeslav Vasil'jevič FEDOROV. Kurs metodov optimizacii. Moskva: Nauka, 1986, 325 s. info
- Výukové metody
- Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. - Metody hodnocení
- Pro postoupení ke zkoušce je nutné vypracovat projekt z metod nepodmíněné optimalizace -- podrobnosti naleznete ve studijních materiálech v ISu. Zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňujte přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2017
- Rozsah
- 2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
- Garance
- prof. RNDr. Roman Šimon Hilscher, DSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 18. 9. až Pá 15. 12. Út 18:00–19:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
M5170/02: Po 18. 9. až Pá 15. 12. St 17:00–17:50 M6,01011, P. Zemánek - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, N-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Statistika a analýza dat (program PřF, N-MA)
- Cíle předmětu
- Po úspěšném absolvování tohoto kurzu bude student schopen:
(1) definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi,
(2) formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů,
(3) ovládat efektivní techniky používané v základních oblastech konvexní analýzy,
(4) aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerické metody minimalizace včetně příkladů aplikačního charakteru. - Osnova
- I. Základy konvexní analýzy: Konvexní množiny (základní pojmy, konvexní obaly, oddělování a opěrné nadroviny); Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce); Subgradient a subdiferenciál; Fenchelova transformace; Řešení systémů lineárních a konvexních nerovností
- II. Numerické metody nepodmíněné minimalizace: Jednorozměrná minimalizace (prosté dělení intervalu, půlení intervalu, Fibonacciho metoda, metoda zlatého řezu); Metody hledání volných extrémů (metoda nejrychlejšího spádu, Newtonowa metoda, metoda sdružených gradientů)
- III. Matematické programování: Langrangeův princip (nutné a postačující podmínky optimality, Kuhnovy-Tuckerovy podmínky, základy konvexního programování); Základy teorie duality (Kuhnovy-Tuckerovy vektory, slabá dualita, silná dualita, sedlové body); Závislost řešení na parametrech (věta o obálce; stínová cena)
- Literatura
- doporučená literatura
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v Rn. 1. vyd. Brno: Masarykova univerzita, 2005, viii, 185. ISBN 8021039051. info
- HAMALA, Milan. Nelineárne programovanie. 2., dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1976, 240 s. info
- BERTSEKAS, Dimitri P. Convex Optimization Theory. Athena Scientific, 2009, 256 s. ISBN 978-1-886529-31-1. info
- Convex analysis. Edited by R. Tyrrell Rockafellar. Princeton: Princeton University Press, 1970, xviii, 451. ISBN 0691080690. info
- BORWEIN, Jonathan M. a Adrian S. LEWIS. Convex analysis and nonlinear optimization : theory and examples. New York: Springer-Verlag, 2000, x, 273. ISBN 0387989404. info
- SUN, Wenyu a Ya-Xiang YUAN. Optimization Theory and Methods - Nonlinear Programming. New York: Springer, 2006, 687 s. Springer Optimization and Its Applications, Vol. 1. ISBN 978-0-387-24975-9. info
- SUCHAREV, Aleksej Grigor‘jevič, Aleksandr Vasil'jevič TIMOCHOV a Vjačeslav Vasil'jevič FEDOROV. Kurs metodov optimizacii. Moskva: Nauka, 1986, 325 s. info
- Výukové metody
- Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. - Metody hodnocení
- Pro postoupení ke zkoušce je nutné vypracovat projekt z metod nepodmíněné optimalizace -- podrobnosti naleznete ve studijních materiálech v ISu. Zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňujte přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2016
- Rozsah
- 2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
- Garance
- prof. RNDr. Roman Šimon Hilscher, DSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 19. 9. až Ne 18. 12. St 8:00–9:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
M5170/02: Po 19. 9. až Ne 18. 12. Pá 12:00–12:50 M1,01017, P. Zemánek - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, N-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Statistika a analýza dat (program PřF, N-MA)
- Cíle předmětu
- Po úspěšném absolvování tohoto kurzu bude student schopen:
(1) definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi,
(2) formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů,
(3) ovládat efektivní techniky používané v základních oblastech konvexní analýzy,
(4) aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerické metody minimalizace včetně příkladů aplikačního charakteru. - Osnova
- I. Základy konvexní analýzy: Konvexní množiny (základní pojmy, konvexní obaly, oddělování a opěrné nadroviny); Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce); Subgradient a subdiferenciál; Fenchelova transformace; Řešení systémů lineárních a konvexních nerovností
- II. Numerické metody nepodmíněné minimalizace: Jednorozměrná minimalizace (prosté dělení intervalu, půlení intervalu, Fibonacciho metoda, metoda zlatého řezu); Metody hledání volných extrémů (metoda nejrychlejšího spádu, Newtonowa metoda, metoda sdružených gradientů)
- III. Matematické programování: Langrangeův princip (nutné a postačující podmínky optimality, Kuhnovy-Tuckerovy podmínky, základy konvexního programování); Základy teorie duality (Kuhnovy-Tuckerovy vektory, slabá dualita, silná dualita, sedlové body); Závislost řešení na parametrech (věta o obálce; stínová cena)
- Literatura
- doporučená literatura
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v Rn. 1. vyd. Brno: Masarykova univerzita, 2005, viii, 185. ISBN 8021039051. info
- HAMALA, Milan. Nelineárne programovanie. 2., dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1976, 240 s. info
- BERTSEKAS, Dimitri P. Convex Optimization Theory. Athena Scientific, 2009, 256 s. ISBN 978-1-886529-31-1. info
- Convex analysis. Edited by R. Tyrrell Rockafellar. Princeton: Princeton University Press, 1970, xviii, 451. ISBN 0691080690. info
- BORWEIN, Jonathan M. a Adrian S. LEWIS. Convex analysis and nonlinear optimization : theory and examples. New York: Springer-Verlag, 2000, x, 273. ISBN 0387989404. info
- SUN, Wenyu a Ya-Xiang YUAN. Optimization Theory and Methods - Nonlinear Programming. New York: Springer, 2006, 687 s. Springer Optimization and Its Applications, Vol. 1. ISBN 978-0-387-24975-9. info
- SUCHAREV, Aleksej Grigor‘jevič, Aleksandr Vasil'jevič TIMOCHOV a Vjačeslav Vasil'jevič FEDOROV. Kurs metodov optimizacii. Moskva: Nauka, 1986, 325 s. info
- Výukové metody
- Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. - Metody hodnocení
- Pro postoupení ke zkoušce je nutné vypracovat projekt z metod nepodmíněné optimalizace -- podrobnosti naleznete ve studijních materiálech v ISu. Zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňujte přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2015
- Rozsah
- 2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 8:00–9:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
M5170/02: Út 14:00–14:50 M5,01013, P. Zemánek - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, N-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Statistika a analýza dat (program PřF, N-MA)
- Cíle předmětu
- Po úspěšném absolvování tohoto kurzu bude student schopen: (1) definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi, (2) formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů, (3) ovládat efektivní techniky používané v základních oblastech konvexní analýzy, (4) aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerické metody minimalizace včetně příkladů aplikačního charakteru.
- Osnova
- I. Základy konvexní analýzy: Konvexní množiny (základní pojmy, konvexní obaly, oddělování a opěrné nadroviny); Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce); Subgradient a subdiferenciál; Fenchelova transformace; Řešení systémů lineárních a konvexních nerovností
- II. Matematické programování, nutné a dostatečné podmínky optimality, dualita: Langrangeův princip (Kuhnovy-Tuckerovy podmínky, základy konvexního programování); Základy teorie duality (Kuhnovy-Tuckerovy vektory, vztah duality, sedlové body); Dualita ve speciálních úlohách a aplikace (kvadratické a lineární programování)
- III. Numerické metody minimalizace: Jednorozměrná minimalizace (Fibonacciova metoda, metoda zlatého řezu); Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda)
- Literatura
- DOŠLÝ, Ondřej. Základy konvexní analýzy a optimalizace v Rn. 1. vyd. Brno: Masarykova univerzita, 2005, viii, 185. ISBN 8021039051. info
- HAMALA, Milan. Nelineárne programovanie. 2., dopl. vyd. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1976, 240 s. info
- BERTSEKAS, Dimitri P. Convex Optimization Theory. Athena Scientific, 2009, 256 s. ISBN 978-1-886529-31-1. info
- Convex analysis. Edited by R. Tyrrell Rockafellar. Princeton: Princeton University Press, 1970, xviii, 451. ISBN 0691080690. info
- BORWEIN, Jonathan M. a Adrian S. LEWIS. Convex analysis and nonlinear optimization : theory and examples. New York: Springer-Verlag, 2000, x, 273. ISBN 0387989404. info
- SUCHAREV, Aleksej Grigor‘jevič, Aleksandr Vasil'jevič TIMOCHOV a Vjačeslav Vasil'jevič FEDOROV. Kurs metodov optimizacii. Moskva: Nauka, 1986, 325 s. info
- Výukové metody
- Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. - Metody hodnocení
- Zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňujte přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2014
- Rozsah
- 2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Petr Zemánek, Ph.D. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Pá 10:00–11:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematické a statistické metody v ekonomii (program ESF, N-KME)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Po úspěšném absolvování tohoto kurzu bude student schopen:
definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi;
formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů;
ovládat efektivní techniky používané v základních oblastech konvexní analýzy;
aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerickým metodám minimalizace včetně příkladů aplikačního charakteru. - Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Výukové metody
- Teoretická přednáška doplněná cvičením
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2013
- Rozsah
- 2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 8:00–9:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematické a statistické metody v ekonomii (program ESF, N-KME)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Po úspěšném absolvování tohoto kurzu bude student schopen:
definovat a interpretovat základní pojmy užívané v základních partiích konvexní analýzy a vysvětlit souvislosti mezi nimi;
formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů;
ovládat efektivní techniky používané v základních oblastech konvexní analýzy;
aplikovat získané poznatky při řešení konkrétních úloh konvexního programování a také numerickým metodám minimalizace včetně příkladů aplikačního charakteru. - Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Výukové metody
- Teoretická přednáška doplněná cvičením
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2012
- Rozsah
- 2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 8:00–9:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematické a statistické metody v ekonomii (program ESF, N-KME)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchače se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Výukové metody
- Teoretická přednáška doplněná cvičením
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2011
- Rozsah
- 2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Pá 10:00–11:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- KREDITY_MIN(30)
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematické a statistické metody v ekonomii (program ESF, N-KME)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchače se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Výukové metody
- Teoretická přednáška doplněná cvičením
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2010
- Rozsah
- 2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Pá 10:00–11:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- KREDITY_MIN(30)
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematické a statistické metody v ekonomii (program ESF, N-KME)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchače se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Výukové metody
- Teoretická přednáška doplněná cvičením
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2009
- Rozsah
- 2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
prof. RNDr. Roman Šimon Hilscher, DSc. (náhr. zkoušející) - Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 12:00–13:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchače se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Výukové metody
- Teoretická přednáška doplněná cvičením
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2008
- Rozsah
- 2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 15:00–16:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchae se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2007
- Rozsah
- 2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 16:00–17:50 N41
- Rozvrh seminárních/paralelních skupin:
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchae se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2006
- Rozsah
- 2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ondřej Došlý, DrSc. - Rozvrh
- Pá 10:00–11:50 N41
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M4110 Lineární programování
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchae se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2005
- Rozsah
- 2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ondřej Došlý, DrSc. - Rozvrh
- Pá 10:00–11:50 N21
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M4110 Lineární programování
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchae se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2004
- Rozsah
- 2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ondřej Došlý, DrSc. - Rozvrh
- Út 12:00–13:50 UP1
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M4110 Lineární programování
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kursu je seznámit posluchae se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2003
- Rozsah
- 2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ondřej Došlý, DrSc. - Rozvrh seminárních/paralelních skupin
- M5170/01: Rozvrh nebyl do ISu vložen. O. Došlý
- Předpoklady
- M4110 Lineární programování
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchae se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2002
- Rozsah
- 2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ondřej Došlý, DrSc. - Předpoklady
- M4110 Lineární programování
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchae se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
M5170 Analýza v komplexním oboru
Přírodovědecká fakultapodzim 2000
- Rozsah
- 4/2/0. 9 kr. Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Josef Kalas, CSc. - Předpoklady
- M3100 Matematická analýza III
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Topologické základy. Funkce komplexní proměnné, komplexní diferencovatelnost, Cauchyho-Riemannovy rovnice. Integrace v komplexním oboru. Cauchyova věta, Cauchyův integrální vzorec. Základní vlastnosti holomorfních funkcí. Mocninné a Laurentovy řady. Isolované singularity holomorfní funkce, teorie reziduí a její využití. Celé funkce. Meromorfní funkce. Základní principy konformního zobrazení.
- Literatura
- ČERNÝ, Ilja. Analýza v komplexním oboru. 1. vyd. Praha: Academia, 1983, 822 s. info
- NOVÁK, Vítězslav. Analýza v komplexním oboru. 1. vyd. Praha: Státní pedagogické nakladatelství, 1984, 103 s. info
- Bicadze, A. V. Osnovy teorii analitičeskich funkcij komplexnogo peremennogo. nauka, Moskva, 1969.
- JEVGRAFOV, Marat Andrejevič. Funkce komplexní proměnné. Translated by Ladislav Průcha. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1981, 379 s. URL info
- JEVGRAFOV, Marat Andrejevič. Sbírka úloh z teorie funkcí komplexní proměnné. Translated by Anna Něničková - Věra Maňasová - Eva Nováková. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1976, 542 s. URL info
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
M5170 Analýza v komplexním oboru
Přírodovědecká fakultapodzim 1999
- Rozsah
- 2/1/0. 9 kr. Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Josef Kalas, CSc. - Předpoklady
- M3100 Matematická analýza III && M2110 Lineární algebra II
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Osnova
- Topologické základy. Funkce komplexní proměnné, komplexní diferencovatelnost, Cauchyho-Riemannovy rovnice. Integrace v komplexním oboru. Cauchyova věta, Cauchyův integrální vzorec. Základní vlastnosti holomorfních funkcí. Mocninné a Laurentovy řady. Isolované singularity holomorfní funkce, teorie reziduí a její využití. Celé funkce. Meromorfní funkce. Základní principy konformního zobrazení.
- Literatura
- ČERNÝ, Ilja. Analýza v komplexním oboru. 1. vyd. Praha: Academia, 1983, 822 s. info
- NOVÁK, Vítězslav. Analýza v komplexním oboru. 1. vyd. Praha: Státní pedagogické nakladatelství, 1984, 103 s. info
- Bicadze, A. V. Osnovy teorii analitičeskich funkcij komplexnogo peremennogo. nauka, Moskva, 1969.
- JEVGRAFOV, Marat Andrejevič. Funkce komplexní proměnné. Translated by Ladislav Průcha. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1981, 379 s. URL info
- JEVGRAFOV, Marat Andrejevič. Sbírka úloh z teorie funkcí komplexní proměnné. Translated by Anna Něničková - Věra Maňasová - Eva Nováková. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1976, 542 s. URL info
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2011 - akreditace
Údaje z období podzim 2011 - akreditace se nezveřejňují
- Rozsah
- 2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Předpoklady
- KREDITY_MIN(30)
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematické a statistické metody v ekonomii (program ESF, N-KME)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchače se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Výukové metody
- Teoretická přednáška doplněná cvičením
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2010 - akreditace
- Rozsah
- 2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Předpoklady
- KREDITY_MIN(30)
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematické a statistické metody v ekonomii (program ESF, N-KME)
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchače se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Výukové metody
- Teoretická přednáška doplněná cvičením
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
M5170 Matematické programování
Přírodovědecká fakultapodzim 2007 - akreditace
- Rozsah
- 2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Ondřej Došlý, DrSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ondřej Došlý, DrSc. - Předpoklady
- M4110 Lineární programování
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, B-MA)
- Matematika (program PřF, M-MA)
- Matematika (program PřF, N-MA)
- Cíle předmětu
- Cílem kursu je seznámit posluchae se základy konvexní analýzy a jejich aplikací v optimalizaních úlohách v prostorech konené dimenze. Speciální pozornost je vnována úlohám konvexního programování a také numerickým metodám minimalizace.
- Osnova
- I. Základy konvexní analýzy. Konvexní množiny (základní pojmy, konvexní obaly, odělování a opěrné nadroviny) Konvexní funkce (základní pojmy, kriteria konvexnosti pro diferencovatelné funkce, Subgradient a subdiferenciál, Fenchelova transformace, řešení systémů lineárních a konvexních nerovností II. Dualita, nutné a dostatečné podmínky optimality Langrangeův princip (Kuhn-Tuckerovy podmínky, základy konvexního programování) Základy teorie duality (Kuhn-Tuckerovy vektory, vztah duality, sedlové body) Dualita ve speciálních úlohách a alikace (kvadratické a lineární programování) III. Numerické metody minimalizace Jednorozměrná minimalizace (Fibonacciova metoda, metoda ylatého řezu) Metody hledání volných extrémů (metoda nejrychlejšího spádu, metoda sdružených gradientů, Newtonowa metoda) Kvadratické programování (Wolfeho metoda a její modifikace, Theil van de Panne metoda)
- Literatura
- Metody hodnocení
- Standardní přednáška a cvičení, zkouška má písemnou i ústní část.
- Navazující předměty
- Informace učitele
- Nepodceňovat přípravu v průběhu semestru!!
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
- Statistika zápisu (nejnovější)