M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
jaro 2025
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučováno kontaktně
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem předmětu je seznámit studenty:
s využitím simulací při analýze stochastických modelů;
s vlastnostmi některých vybraných pravděpodobnostních rozložení;
s důležitými modely systémů hromadné obsluhy;
s vlastnostmi Galtonova - Watsonova procesu větvení.
Výstupy z učení
Po absolvování tohoto kurzu studenti budou schopni:
využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení;
ověřit shodu empirického rozložení s teoretickým rozložením;
vypočítat důležité charakteristiky systémů hromadné obsluhy;
analyzovat chování Galtonova - Watsonova procesu větvení.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, optimalizační úlohy v systémech hromadné obsluhy.
  • Pravděpodobnostní vytvořující funkce a její aplikace při analýze Galtonova - Watsonova procesu větvení.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 2h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena třemi nebo čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %. Je možno používat studijní materiály.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
jaro 2024
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (pomocník)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 19. 2. až Ne 26. 5. Čt 8:00–9:50 M5,01013
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Po 19. 2. až Ne 26. 5. Pá 12:00–13:50 MP1,01014, Pá 12:00–13:50 M3,01023, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem předmětu je seznámit studenty:
s využitím simulací při analýze stochastických modelů;
s vlastnostmi některých vybraných pravděpodobnostních rozložení;
s důležitými modely systémů hromadné obsluhy;
s vlastnostmi Galtonova - Watsonova procesu větvení.
Výstupy z učení
Po absolvování tohoto kurzu studenti budou schopni:
využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení;
ověřit shodu empirického rozložení s teoretickým rozložením;
vypočítat důležité charakteristiky systémů hromadné obsluhy;
analyzovat chování Galtonova - Watsonova procesu větvení.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, optimalizační úlohy v systémech hromadné obsluhy.
  • Pravděpodobnostní vytvořující funkce a její aplikace při analýze Galtonova - Watsonova procesu větvení.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 2h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena třemi nebo čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %. Je možno používat studijní materiály.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
jaro 2023
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Pá 10:00–11:50 M6,01011
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Po 12:00–12:50 M3,01023, Po 13:00–13:50 MP1,01014, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem předmětu je seznámit studenty:
s využitím simulací při analýze stochastických modelů;
s vlastnostmi některých vybraných pravděpodobnostních rozložení;
s důležitými modely systémů hromadné obsluhy;
s vlastnostmi Galtonova - Watsonova procesu větvení.
Výstupy z učení
Po absolvování tohoto kurzu studenti budou schopni:
využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení;
ověřit shodu empirického rozložení s teoretickým rozložením;
vypočítat důležité charakteristiky systémů hromadné obsluhy;
analyzovat chování Galtonova - Watsonova procesu větvení.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, optimalizační úlohy v systémech hromadné obsluhy.
  • Pravděpodobnostní vytvořující funkce a její aplikace při analýze Galtonova - Watsonova procesu větvení.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 2h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena třemi nebo čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %. Je možno používat studijní materiály.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
jaro 2022
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Pá 8:00–9:50 M6,01011
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Pá 10:00–10:50 M6,01011, Pá 11:00–11:50 MP2,01014a, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem předmětu je seznámit studenty:
s využitím simulací při analýze stochastických modelů;
s vlastnostmi některých vybraných pravděpodobnostních rozložení;
s důležitými modely systémů hromadné obsluhy;
s vlastnostmi Galtonova - Watsonova procesu větvení.
Výstupy z učení
Po absolvování tohoto kurzu studenti budou schopni:
využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení;
ověřit shodu empirického rozložení s teoretickým rozložením;
vypočítat důležité charakteristiky systémů hromadné obsluhy;
analyzovat chování Galtonova - Watsonova procesu větvení.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, optimalizační úlohy v systémech hromadné obsluhy.
  • Pravděpodobnostní vytvořující funkce a její aplikace při analýze Galtonova - Watsonova procesu větvení.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 2h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena třemi nebo čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %. Je možno používat studijní materiály.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
jaro 2021
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 1. 3. až Pá 14. 5. St 8:00–9:50 online_M3
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Po 1. 3. až Pá 14. 5. Po 14:00–15:50 online_MP1, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem předmětu je seznámit studenty:
s využitím simulací při analýze stochastických modelů;
s vlastnostmi některých vybraných pravděpodobnostních rozložení;
s důležitými modely systémů hromadné obsluhy;
s vlastnostmi Galtonova - Watsonova procesu větvení.
Výstupy z učení
Po absolvování tohoto kurzu studenti budou schopni:
využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení;
ověřit shodu empirického rozložení s teoretickým rozložením;
vypočítat důležité charakteristiky systémů hromadné obsluhy;
analyzovat chování Galtonova - Watsonova procesu větvení.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, optimalizační úlohy v systémech hromadné obsluhy.
  • Pravděpodobnostní vytvořující funkce a její aplikace při analýze Galtonova - Watsonova procesu větvení.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 2h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena třemi nebo čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %. Je možno používat studijní materiály.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
jaro 2020
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 12:00–13:50 M5,01013
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Pá 8:00–9:50 M4,01024, Pá 8:00–9:50 MP1,01014, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem předmětu je seznámit studenty:
s využitím simulací při analýze stochastických modelů;
s vlastnostmi některých vybraných pravděpodobnostních rozložení;
s důležitými modely systémů hromadné obsluhy;
s vlastnostmi Galtonova - Watsonova procesu větvení.
Výstupy z učení
Po absolvování tohoto kurzu studenti budou schopni:
využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení;
ověřit shodu empirického rozložení s teoretickým rozložením;
vypočítat důležité charakteristiky systémů hromadné obsluhy;
analyzovat chování Galtonova - Watsonova procesu větvení.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, optimalizační úlohy v systémech hromadné obsluhy.
  • Pravděpodobnostní vytvořující funkce a její aplikace při analýze Galtonova - Watsonova procesu větvení.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena třemi or čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %. Je možno používat studijní materiály.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
jaro 2019
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 18. 2. až Pá 17. 5. Po 14:00–15:50 M2,01021
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Po 18. 2. až Pá 17. 5. Po 16:00–16:50 M6,01011, Po 16:00–16:50 MP1,01014, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Po absolvování tohoto kurzu studenti budou schopni: - využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení; - ověřit shodu empirického rozložení s teoretickým rozložením; - vypočítat důležité charakteristiky systémů hromadné obsluhy; - analyzovat chování Galtonova - Watsonova procesu.
Výstupy z učení
Po absolvování tohoto kurzu studenti budou schopni:
využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení;
ověřit shodu empirického rozložení s teoretickým rozložením;
vypočítat důležité charakteristiky systémů hromadné obsluhy;
analyzovat chování Galtonova - Watsonova procesu větvení.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, optimalizační úlohy v systémech hromadné obsluhy.
  • Pravděpodobnostní vytvořující funkce a její aplikace při analýze Galtonova - Watsonova procesu větvení.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena třemi nebo čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %. Je možno používat studijní materiály.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
jaro 2018
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 8:00–9:50 M5,01013
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Út 12:00–12:50 M1,01017, Út 12:00–12:50 MP1,01014, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Po absolvování tohoto kurzu studenti budou schopni: - využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení; - ověřit shodu empirického rozložení s teoretickým rozložením; - vypočítat důležité charakteristiky systémů hromadné obsluhy; - analyzovat chování Galtonova - Watsonova procesu.
Výstupy z učení
Po absolvování tohoto kurzu studenti budou schopni:
využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení;
ověřit shodu empirického rozložení s teoretickým rozložením;
vypočítat důležité charakteristiky systémů hromadné obsluhy;
analyzovat chování Galtonova - Watsonova procesu větvení.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, optimalizační úlohy v systémech hromadné obsluhy.
  • Pravděpodobnostní vytvořující funkce a její aplikace při analýze Galtonova - Watsonova procesu větvení.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena třemi nebo čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %. Je možno používat studijní materiály.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
jaro 2017
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 20. 2. až Po 22. 5. Po 8:00–9:50 M1,01017
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Po 20. 2. až Po 22. 5. Út 9:00–9:50 MP1,01014, Út 9:00–9:50 M3,01023, M. Budíková
M6444/02: Po 20. 2. až Po 22. 5. Út 10:00–10:50 MP1,01014, Út 10:00–10:50 M3,01023, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Po absolvování tohoto kurzu studenti budou schopni: - využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení; - ověřit shodu empirického rozložení s teoretickým rozložením; - vypočítat důležité charakteristiky systémů hromadné obsluhy; - analyzovat chování Galtonova - Watsonova procesu.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, optimalizační úlohy v systémech hromadné obsluhy.
  • Pravděpodobnostní vytvořující funkce a její aplikace při analýze Galtonova - Watsonova procesu větvení.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena třemi or čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %. Je možno používat studijní materiály.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely

Přírodovědecká fakulta
jaro 2016
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 10:00–11:50 M2,01021
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Pá 8:00–8:50 MP1,01014, Pá 8:00–8:50 MP2,01014a, Pá 8:00–8:50 M2,01021, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Po absolvování tohoto kurzu studenti budou schopni: - využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení; - ověřit shodu empirického rozložení s teoretickým rozložením; - vypočítat důležité charakteristiky systémů hromadné obsluhy; - analyzovat chování Galtonova - Watsonova procesu.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, optimalizační úlohy v systémech hromadné obsluhy.
  • Pravděpodobnostní vytvořující funkce a její aplikace při analýze Galtonova - Watsonova procesu větvení.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena třemi or čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %. Je možno používat studijní materiály.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely

Přírodovědecká fakulta
jaro 2015
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 8:00–9:50 M5,01013
  • Rozvrh seminárních/paralelních skupin:
M6444/01: St 13:00–13:50 M6,01011, St 13:00–13:50 MP1,01014
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Po absolvování tohoto kurzu studenti budou schopni: (1) využít statistický toolbox systému MATLAB pro generování pseudonáhodných čísel z různých pravděpodobnostních rozložení; (2) ověřit shodu empirického rozložení s teoretickým rozložením; (3) vypočítat důležité charakteristiky systémů hromadné obsluhy; (4) analyzovat chování Galtonova-Watsonova procesu.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, optimalizační úlohy v systémech hromadné obsluhy.
  • Pravděpodobnostní vytvořující funkce a její aplikace při analýze Galtonova - Watsonova procesu větvení.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena třemi nebo čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %. Je možno používat studijní materiály.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely

Přírodovědecká fakulta
jaro 2014
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 14:00–15:50 M1,01017
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Po 14:00–14:50 MP1,01014, Po 14:00–14:50 M6,01011, M. Budíková
M6444/02: Po 15:00–15:50 MP1,01014, Po 15:00–15:50 M6,01011, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Předmět se zabývá možnostmi modelování některých jednoduchých reálných situací, v nichž působí náhodné vlivy. Pozornost je věnována analytickým i simulačním nástrojům pro popis dynamických pravděpodobnostních systémů s diskrétními stavy a jejich využití v analýze systémů hromadné obsluhy. Po absolvování tohoto kurzu bude student schopen modelovat jednoduché reálné situace pomocí analytických i simulačních metod. Při výpočtech bude schopen používat systém MATLAB.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Řízené homogenní markovské řetězce, Howardův iterační postup.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, opimalizační úlohy v systémech hromadné obsluhy.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely

Přírodovědecká fakulta
jaro 2013
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 8:00–9:50 M1,01017
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Po 9:00–9:50 MP1,01014, Po 9:00–9:50 M6,01011, M. Budíková
M6444/02: Po 8:00–8:50 MP1,01014, Po 8:00–8:50 M6,01011, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Předmět se zabývá možnostmi modelování některých jednoduchých reálných situací, v nichž působí náhodné vlivy. Pozornost je věnována analytickým i simulačním nástrojům pro popis dynamických pravděpodobnostních systémů s diskrétními stavy a jejich využití v analýze systémů hromadné obsluhy. Po absolvování tohoto kurzu bude student schopen modelovat jednoduché reálné situace pomocí analytických i simulačních metod. Při výpočtech bude schopen používat systém MATLAB.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Řízené homogenní markovské řetězce, Howardův iterační postup.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, opimalizační úlohy v systémech hromadné obsluhy.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Závěrečná zkouška je písemná, je tvořena čtyřmi příklady. Příklady jsou hodnoceny na škále 0 až 100. Je nutno získat aspoň 51 %.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely

Přírodovědecká fakulta
jaro 2012
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Pá 8:00–9:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Pá 10:00–10:50 M3,01023, Pá 10:00–10:50 MP1,01014
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá možnostmi modelování některých jednoduchých reálných situací, v nichž působí náhodné vlivy. Pozornost je věnována analytickým i simulačním nástrojům pro popis dynamických pravděpodobnostních systémů s diskrétními stavy a jejich využití v analýze systémů hromadné obsluhy. Po absolvování tohoto kurzu bude student schopen modelovat jednoduché reálné situace pomocí analytických i simulačních metod. Při výpočtech bude schopen používat systém MATLAB.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Řízené homogenní markovské řetězce, Howardův iterační postup.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, opimalizační úlohy v systémech hromadné obsluhy.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Zkouška je písemná.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely II

Přírodovědecká fakulta
jaro 2011
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Pá 8:00–9:50 M2,01021
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Po 8:00–8:50 M4,01024, Po 8:00–8:50 MP1,01014, M. Budíková
M6444/02: Po 9:00–9:50 M4,01024, Po 9:00–9:50 MP1,01014, M. Budíková
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá speciálním případem stochastických procesů - procesy se spojitým časem, které mají markovskou vlastnost. Jsou uvažovány jak konečné, tak spočetné markovské řetězce. Pozornost je věnována rovněž systémům hromadné obsluhy. Po absolvování tohoto kurzu bude student schopen modelovat jednoduché reálné situace pomocí homogenních markovských řetězců se spojitým časem. Při výpočtech spojených s analýzou těchto řetězců bude schopen používat systém MATLAB.
Osnova
  • Konečné markovské řetězce se spojitým časem: základní vztahy, Chapman-Kolmogorovova rovnost, Kolmogorovovy diferenciální rovnice a jejich řešení, limitní rozdělení stavů. Spočetné markovské řetězce se spojitým časem: řešení Kolmogorovových rovnic pro spočetné řetězce, limitní rozdělení stavů pro spočetné řetězce, Poissonův proces, Yuleův proces, obecný proces množení, lineární proces množení a zániku, obecný proces množení a zániku. Stochastické modely v teorii hromadné obsluhy: systémy hromadné obsluhy a jejich klasifikace, systémy s poissonovským vstupem a exponencialními dobami obsluhy.
Literatura
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • PRÁŠKOVÁ, Zuzana a Petr LACHOUT. Základy náhodných procesů. 1. vyd. Praha: Karolinum, 1998, 146 s. ISBN 8071846880. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Zkouška je písemná.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely II

Přírodovědecká fakulta
jaro 2010
Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 13:00–14:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Po 8:00–8:50 MP1,01014, Po 8:00–8:50 M3,01023
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá speciálním případem stochastických procesů - procesy se spojitým časem, které mají markovskou vlastnost. Jsou uvažovány jak konečné, tak spočetné markovské řetězce. Pozornost je věnována rovněž systémům hromadné obsluhy. Po absolvování tohoto kurzu bude student schopen modelovat jednoduché reálné situace pomocí homogenních markovských řetězců se spojitým časem. Při výpočtech spojených s analýzou těchto řetězců bude schopen používat systém MATLAB.
Osnova
  • Konečné markovské řetězce se spojitým časem: základní vztahy, Chapman-Kolmogorovova rovnost, Kolmogorovovy diferenciální rovnice a jejich řešení, limitní rozdělení stavů. Spočetné markovské řetězce se spojitým časem: řešení Kolmogorovových rovnic pro spočetné řetězce, limitní rozdělení stavů pro spočetné řetězce, Poissonův proces, Yuleův proces, obecný proces množení, lineární proces množení a zániku, obecný proces množení a zániku. Stochastické modely v teorii hromadné obsluhy: systémy hromadné obsluhy a jejich klasifikace, systémy s poissonovským vstupem a exponencialními dobami obsluhy.
Literatura
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • PRÁŠKOVÁ, Zuzana a Petr LACHOUT. Základy náhodných procesů. 1. vyd. Praha: Karolinum, 1998, 146 s. ISBN 8071846880. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Zkouška je písemná.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely II

Přírodovědecká fakulta
jaro 2009
Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Čt 10:00–10:50 MP1,01014, Čt 10:00–10:50 M3,01023
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá speciálním případem stochastických procesů - procesy se spojitým časem, které mají markovskou vlastnost. Jsou uvažovány jak konečné, tak spočetné markovské řetězce. Pozornost je věnována rovněž systémům hromadné obsluhy. Po absolvování tohoto kurzu bude student schopen modelovat jednoduché reálné situace pomocí homogenních markovských řetězců se spojitým časem. Při výpočtech spojených s analýzou těchto řetězců bude schopen používat systém MATLAB.
Osnova
  • Konečné markovské řetězce se spojitým časem: základní vztahy, Chapman-Kolmogorovova rovnost, Kolmogorovovy diferenciální rovnice a jejich řešení, limitní rozdělení stavů. Spočetné markovské řetězce se spojitým časem: řešení Kolmogorovových rovnic pro spočetné řetězce, limitní rozdělení stavů pro spočetné řetězce, Poissonův proces, Yuleův proces, obecný proces množení, lineární proces množení a zániku, obecný proces množení a zániku. Stochastické modely v teorii hromadné obsluhy: systémy hromadné obsluhy a jejich klasifikace, systémy s poissonovským vstupem a exponencialními dobami obsluhy.
Literatura
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • PRÁŠKOVÁ, Zuzana a Petr LACHOUT. Základy náhodných procesů. 1. vyd. Praha: Karolinum, 1998, 146 s. ISBN 8071846880. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Metody hodnocení
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB. Zkouška je písemná.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely II

Přírodovědecká fakulta
jaro 2008
Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Jana Jurečková, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 14:00–15:50 UP2
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Út 11:00–11:50 M3,04005 - dříve Janáčkovo nám. 2a, Út 11:00–11:50 N41
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá speciálním případem stochastických procesů - procesy se spojitým časem, které mají markovskou vlastnost. Jsou uvažovány jak konečné, tak spočetné markovské řetězce. Pozornost je věnována rovněž systémům hromadné obsluhy.
Osnova
  • Konečné markovské řetězce se spojitým časem: základní vztahy, Chapman-Kolmogorovova rovnost, Kolmogorovovy diferenciální rovnice a jejich řešení, limitní rozdělení stavů. Spočetné markovské řetězce se spojitým časem: řešení Kolmogorovových rovnic pro spočetné řetězce, limitní rozdělení stavů pro spočetné řetězce, Poissonův proces, Yuleův proces, obecný proces množení, lineární proces množení a zániku, obecný proces množení a zániku. Stochastické modely v teorii hromadné obsluhy: systémy hromadné obsluhy a jejich klasifikace, systémy s poissonovským vstupem a exponencialními dobami obsluhy.
Literatura
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • PRÁŠKOVÁ, Zuzana a Petr LACHOUT. Základy náhodných procesů. 1. vyd. Praha: Karolinum, 1998, 146 s. ISBN 8071846880. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Metody hodnocení
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Zkouška je písemná.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely II

Přírodovědecká fakulta
jaro 2007
Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Jana Jurečková, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Marie Budíková, Dr.
Rozvrh
Čt 10:00–11:50 UP2
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Út 10:00–10:50 M3,04005 - dříve Janáčkovo nám. 2a, Út 10:00–10:50 N21
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Statistika
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá speciálním případem stochastických procesů - procesy se spojitým časem, které mají markovskou vlastnost. Jsou uvažovány jak konečné, tak spočetné markovské řetězce. Pozornost je věnována rovněž systémům hromadné obsluhy.
Osnova
  • Konečné markovské řetězce se spojitým časem: základní vztahy, Chapman-Kolmogorovova rovnost, Kolmogorovovy diferenciální rovnice a jejich řešení, limitní rozdělení stavů. Spočetné markovské řetězce se spojitým časem: řešení Kolmogorovových rovnic pro spočetné řetězce, limitní rozdělení stavů pro spočetné řetězce, Poissonův proces, Yuleův proces, obecný proces množení, lineární proces množení a zániku, obecný proces množení a zániku. Stochastické modely v teorii hromadné obsluhy: systémy hromadné obsluhy a jejich klasifikace, systémy s poissonovským vstupem a exponencialními dobami obsluhy.
Literatura
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • PRÁŠKOVÁ, Zuzana a Petr LACHOUT. Základy náhodných procesů. 1. vyd. Praha: Karolinum, 1998, 146 s. ISBN 8071846880. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Metody hodnocení
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Zkouška je písemná.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely II

Přírodovědecká fakulta
jaro 2006
Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Jana Jurečková, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Marie Budíková, Dr.
Rozvrh
Čt 12:00–13:50 N41
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Čt 14:00–14:50 M3,04005 - dříve Janáčkovo nám. 2a, Čt 14:00–14:50 N41
Předpoklady
M3121 Pravděpodobnost || M4122 Statistika
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá speciálním případem stochastických procesů - procesy se spojitým časem, které mají markovskou vlastnost. Jsou uvažovány jak konečné, tak spočetné markovské řetězce. Pozornost je věnována rovněž systémům hromadné obsluhy.
Osnova
  • Konečné markovské řetězce se spojitým časem: základní vztahy, Chapman-Kolmogorovova rovnost, Kolmogorovovy diferenciální rovnice a jejich řešení, limitní rozdělení stavů. Spočetné markovské řetězce se spojitým časem: řešení Kolmogorovových rovnic pro spočetné řetězce, limitní rozdělení stavů pro spočetné řetězce, Poissonův proces, Yuleův proces, obecný proces množení, lineární proces množení a zániku, obecný proces množení a zániku. Stochastické modely v teorii hromadné obsluhy: systémy hromadné obsluhy a jejich klasifikace, systémy s poissonovským vstupem a exponencialními dobami obsluhy.
Literatura
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • PRÁŠKOVÁ, Zuzana a Petr LACHOUT. Základy náhodných procesů. 1. vyd. Praha: Karolinum, 1998, 146 s. ISBN 8071846880. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Metody hodnocení
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Zkouška je písemná.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely II

Přírodovědecká fakulta
jaro 2005
Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Jana Jurečková, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Marie Budíková, Dr.
Rozvrh
Čt 14:00–15:50 N41
  • Rozvrh seminárních/paralelních skupin:
M6444/01: Pá 10:00–10:50 M3,04005 - dříve Janáčkovo nám. 2a, Pá 10:00–10:50 N41, M. Budíková
Předpoklady
M3121 Pravděpodobnost || M4122 Statistika
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá speciálním případem stochastických procesů - procesy se spojitým časem, které mají markovskou vlastnost. Jsou uvažovány jak konečné, tak spočetné markovské řetězce. Pozornost je věnována rovněž systémům hromadné obsluhy.
Osnova
  • Konečné markovské řetězce se spojitým časem: základní vztahy, Chapman-Kolmogorovova rovnost, Kolmogorovovy diferenciální rovnice a jejich řešení, limitní rozdělení stavů. Spočetné markovské řetězce se spojitým časem: řešení Kolmogorovových rovnic pro spočetné řetězce, limitní rozdělení stavů pro spočetné řetězce, Poissonův proces, Yuleův proces, obecný proces množení, lineární proces množení a zániku, obecný proces množení a zániku. Stochastické modely v teorii hromadné obsluhy: systémy hromadné obsluhy a jejich klasifikace, systémy s poissonovským vstupem a exponencialními dobami obsluhy.
Literatura
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • PRÁŠKOVÁ, Zuzana a Petr LACHOUT. Základy náhodných procesů. 1. vyd. Praha: Karolinum, 1998, 146 s. ISBN 8071846880. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Metody hodnocení
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Zkouška je písemná.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely II

Přírodovědecká fakulta
jaro 2004
Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Jana Jurečková, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Marie Budíková, Dr.
Rozvrh seminárních/paralelních skupin
M6444/01: Rozvrh nebyl do ISu vložen. M. Budíková
Předpoklady
M3121 Pravděpodobnost || M4122 Statistika
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
podzim 2024

Předmět se v období podzim 2024 nevypisuje.

Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučováno kontaktně
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
podzim 2023

Předmět se v období podzim 2023 nevypisuje.

Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
podzim 2022

Předmět se v období podzim 2022 nevypisuje.

Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
podzim 2021

Předmět se v období podzim 2021 nevypisuje.

Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
podzim 2020

Předmět se v období podzim 2020 nevypisuje.

Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely markovského typu

Přírodovědecká fakulta
podzim 2019

Předmět se v období podzim 2019 nevypisuje.

Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely

Přírodovědecká fakulta
jaro 2012 - akreditace

Údaje z období jaro 2012 - akreditace se nezveřejňují

Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M3121 Pravděpodobnost a statistika I || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá možnostmi modelování některých jednoduchých reálných situací, v nichž působí náhodné vlivy. Pozornost je věnována analytickým i simulačním nástrojům pro popis dynamických pravděpodobnostních systémů s diskrétními stavy a jejich využití v analýze systémů hromadné obsluhy. Po absolvování tohoto kurzu bude student schopen modelovat jednoduché reálné situace pomocí analytických i simulačních metod. Při výpočtech bude schopen používat systém MATLAB.
Osnova
  • Problematika modelování, využití simulací, generátory náhodných čísel.
  • Důležitá pravděpodobnostní rozložení, jejich vlastnosti, metody ověřování.
  • Řízené homogenní markovské řetězce, Howardův iterační postup.
  • Základní pojmy teorie hromadné obsluhy, systémy hromadné obsluhy s neomezenou a omezenou kapacitou, opimalizační úlohy v systémech hromadné obsluhy.
Literatura
  • SKALSKÁ, Hana. Stochastické modelování. Vyd. 2., rozšíř. a uprav. Hradec Králové: Gaudeamus, 2006, 162 s. ISBN 807041488X. info
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Zkouška je písemná.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely II

Přírodovědecká fakulta
jaro 2011 - akreditace
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M3121 Pravděpodobnost || M4122 Pravděpodob. a statistika II
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá speciálním případem stochastických procesů - procesy se spojitým časem, které mají markovskou vlastnost. Jsou uvažovány jak konečné, tak spočetné markovské řetězce. Pozornost je věnována rovněž systémům hromadné obsluhy. Po absolvování tohoto kurzu bude student schopen modelovat jednoduché reálné situace pomocí homogenních markovských řetězců se spojitým časem. Při výpočtech spojených s analýzou těchto řetězců bude schopen používat systém MATLAB.
Osnova
  • Konečné markovské řetězce se spojitým časem: základní vztahy, Chapman-Kolmogorovova rovnost, Kolmogorovovy diferenciální rovnice a jejich řešení, limitní rozdělení stavů. Spočetné markovské řetězce se spojitým časem: řešení Kolmogorovových rovnic pro spočetné řetězce, limitní rozdělení stavů pro spočetné řetězce, Poissonův proces, Yuleův proces, obecný proces množení, lineární proces množení a zániku, obecný proces množení a zániku. Stochastické modely v teorii hromadné obsluhy: systémy hromadné obsluhy a jejich klasifikace, systémy s poissonovským vstupem a exponencialními dobami obsluhy.
Literatura
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • PRÁŠKOVÁ, Zuzana a Petr LACHOUT. Základy náhodných procesů. 1. vyd. Praha: Karolinum, 1998, 146 s. ISBN 8071846880. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Výukové metody
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Ve cvičení se využívá systém MATLAB.
Metody hodnocení
Zkouška je písemná.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M6444 Stochastické modely II

Přírodovědecká fakulta
jaro 2008 - akreditace
Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
prof. RNDr. Jana Jurečková, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: RNDr. Marie Budíková, Dr.
Předpoklady
M3121 Pravděpodobnost || M4122 Statistika
Podmínkou je předchozí absolvování předmětu M5444 Stochastické modely I.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá speciálním případem stochastických procesů - procesy se spojitým časem, které mají markovskou vlastnost. Jsou uvažovány jak konečné, tak spočetné markovské řetězce. Pozornost je věnována rovněž systémům hromadné obsluhy.
Osnova
  • Konečné markovské řetězce se spojitým časem: základní vztahy, Chapman-Kolmogorovova rovnost, Kolmogorovovy diferenciální rovnice a jejich řešení, limitní rozdělení stavů. Spočetné markovské řetězce se spojitým časem: řešení Kolmogorovových rovnic pro spočetné řetězce, limitní rozdělení stavů pro spočetné řetězce, Poissonův proces, Yuleův proces, obecný proces množení, lineární proces množení a zániku, obecný proces množení a zániku. Stochastické modely v teorii hromadné obsluhy: systémy hromadné obsluhy a jejich klasifikace, systémy s poissonovským vstupem a exponencialními dobami obsluhy.
Literatura
  • KOŘENÁŘ, Václav. Stochastické procesy. Vyd. 1. Praha: Vysoká škola ekonomická v Praze, 2002, 227 s. ISBN 8024503115. info
  • PRÁŠKOVÁ, Zuzana a Petr LACHOUT. Základy náhodných procesů. 1. vyd. Praha: Karolinum, 1998, 146 s. ISBN 8071846880. info
  • MANDL, Petr. Pravděpodobnostní dynamické modely. 1. vyd. Praha: Academia, 1985, 181 s. info
Metody hodnocení
Výuka se koná každý týden v rozsahu 2h přednáška, 1h cvičení. Zkouška je písemná.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.