M7180 Functional Analysis II
Faculty of ScienceAutumn 2023
- Extent and Intensity
- 2/1/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Peter Šepitka, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 10:00–11:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus. Functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The main aim of the course is to explain bases of the theory of linear operators and the derivative in Banach spaces.
- Learning outcomes
- At the end of the course students will be able to:
define and interpret the basic notions used in the mentioned fields;
formulate relevant mathematical theorems and statements and to explain methods of their proofs;
use effective techniques utilized in the subject areas;
analyse selected problems from the topics of the course. - Syllabus
- 0. Linear operators (repetition from the course Functional analysis I).
- 1. Compact operators.
- 2. Differential calculus in Banach spaces.
- 3. Strictly and uniformly convex spaces.
- 4. Degree of a mapping on Banach spaces. Fixed point theorems.
- 5. Integration of functions with values in Banach spaces.
- Literature
- recommended literature
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- LUKEŠ, Jaroslav. Úvod do funkcionální analýzy. 1. vyd. Praha: Karolinum, 2005, 106 s. ISBN 802460969X. info
- LUKEŠ, Jaroslav. Zápisky z funkcionální analýzy. 1. vyd. Praha: Karolinum, 2002, 354 s. ISBN 8071845973. info
- NAJZAR, Karel. Funkcionální analýza. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1975, 183 s. info
- STARÁ, Jana and Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- TAYLOR, Angus E. Úvod do funkcionální analýzy. Vyd. 1. Praha: Academia, 1973, 408 s. URL info
- Teaching methods
- Lectures, seminars
- Assessment methods
- Two-hour written final exam (it is needed to reach at least 50 % of points) with oral evaluation of the exam with each student.
The conditions (especially regarding the form of the exam) will be specified according to the epidemiological situation and valid restrictions. - Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught once in two years.
M7180 Functional Analysis II
Faculty of Scienceautumn 2021
- Extent and Intensity
- 2/1/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 12:00–13:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus. Functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The main aim of the course is to explain bases of the theory of linear operators and the derivative in Banach spaces.
- Learning outcomes
- At the end of the course students will be able to:
define and interpret the basic notions used in the mentioned fields;
formulate relevant mathematical theorems and statements and to explain methods of their proofs;
use effective techniques utilized in the subject areas;
analyse selected problems from the topics of the course. - Syllabus
- 0. Linear operators (repetition from the course Functional analysis I).
- 1. Compact operators.
- 2. Differential calculus in Banach spaces.
- 3. Strictly and uniformly convex spaces.
- 4. Degree of a mapping on Banach spaces. Fixed point theorems.
- 5. Integration of functions with values in Banach spaces.
- Literature
- recommended literature
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- LUKEŠ, Jaroslav. Úvod do funkcionální analýzy. 1. vyd. Praha: Karolinum, 2005, 106 s. ISBN 802460969X. info
- LUKEŠ, Jaroslav. Zápisky z funkcionální analýzy. 1. vyd. Praha: Karolinum, 2002, 354 s. ISBN 8071845973. info
- NAJZAR, Karel. Funkcionální analýza. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1975, 183 s. info
- STARÁ, Jana and Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- TAYLOR, Angus E. Úvod do funkcionální analýzy. Vyd. 1. Praha: Academia, 1973, 408 s. URL info
- Teaching methods
- Lectures, seminars
- Assessment methods
- The final oral exam (60 minutes) for 20 points. For successfull examination (the grade at least E), the student needs 10 points or more.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught once in two years.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2019
- Extent and Intensity
- 2/1/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
doc. RNDr. Michal Veselý, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Thu 8:00–9:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus. Functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The main aim of the course is to explain bases of the theory of linear operators and the derivative in Banach spaces.
- Learning outcomes
- At the end of the course students will be able to:
define and interpret the basic notions used in the mentioned fields;
formulate relevant mathematical theorems and statements and to explain methods of their proofs;
use effective techniques utilized in the subject areas;
analyse selected problems from the topics of the course. - Syllabus
- 0. Linear operators (repetition from the course Functional analysis I).
- 1. Compact operators.
- 2. Differential calculus in Banach spaces.
- 3. Strictly and uniformly convex spaces.
- 4. Degree of a mapping on Banach spaces. Fixed point theorems.
- 5. Integration of functions with values in Banach spaces.
- Literature
- recommended literature
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- LUKEŠ, Jaroslav. Úvod do funkcionální analýzy. 1. vyd. Praha: Karolinum, 2005, 106 s. ISBN 802460969X. info
- LUKEŠ, Jaroslav. Zápisky z funkcionální analýzy. 1. vyd. Praha: Karolinum, 2002, 354 s. ISBN 8071845973. info
- NAJZAR, Karel. Funkcionální analýza. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1975, 183 s. info
- STARÁ, Jana and Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- TAYLOR, Angus E. Úvod do funkcionální analýzy. Vyd. 1. Praha: Academia, 1973, 408 s. URL info
- Teaching methods
- Lectures, seminars
- Assessment methods
- The final oral exam (60 minutes) for 20 points. For successfull examination (the grade at least E), the student needs 10 points or more.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught once in two years.
M7180 Functional Analysis II
Faculty of Scienceautumn 2017
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Michal Veselý, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 18. 9. to Fri 15. 12. Fri 12:00–13:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus. Functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The main aim of the course is to explain bases of the theory of linear operators and the derivative in Banach spaces.
- Learning outcomes
- At the end of the course students will be able to:
define and interpret the basic notions used in the mentioned fields;
formulate relevant mathematical theorems and statements and to explain methods of their proofs;
use effective techniques utilized in the subject areas;
analyse selected problems from the topics of the course. - Syllabus
- 0. Linear operators (repetition from the course Functional analysis I).
- 1. Compact operators.
- 2. Differential calculus in Banach spaces.
- 3. Strictly and uniformly convex spaces.
- 4. Degree of a mapping on Banach spaces. Fixed point theorems.
- 5. Integration of functions with values in Banach spaces.
- Literature
- recommended literature
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- LUKEŠ, Jaroslav. Úvod do funkcionální analýzy. 1. vyd. Praha: Karolinum, 2005, 106 s. ISBN 802460969X. info
- LUKEŠ, Jaroslav. Zápisky z funkcionální analýzy. 1. vyd. Praha: Karolinum, 2002, 354 s. ISBN 8071845973. info
- NAJZAR, Karel. Funkcionální analýza. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1975, 183 s. info
- STARÁ, Jana and Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- TAYLOR, Angus E. Úvod do funkcionální analýzy. Vyd. 1. Praha: Academia, 1973, 408 s. URL info
- Teaching methods
- Lectures, seminars
- Assessment methods
- The final oral exam (60 minutes) for 20 points. For successfull examination (the grade at least E), the student needs 10 points or more.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2015
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Michal Veselý, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 8:00–9:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus. Linear functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The main aim of the course is to explain bases of the theory of linear operators and the derivative in Banach spaces. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in this subject area; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Spectrum of linear operators (repetition from the course Functional analysis I).
- 2. Spectral theory of self-adjoint and symmetric operators.
- 3. Symmetric and self-adjoint operators in Hilbert spaces: Deficiency indices, self-adjoint extension of a symmetric operator.
- 4. Differential calculus in Banach spaces.
- 5. Strictly and uniformly convex spaces.
- 6. Integration of functions with values in Banach spaces.
- 7. Degree of a mapping on Banach spaces and its applications. Fixed point theorems.
- Literature
- recommended literature
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- STARÁ, Jana and Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Exam: oral. Requirements: to manage the theory from lectures and exercises.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught once in two years.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2013
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Wed 8:00–9:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The aim of the course is to explain bases of theory of linear operators, spectral theory and theory of linear and nonlinear operator equations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Integration of functions with values in Banach spaces. Bochner integral. Holomorphic functions with values in Banach spaces. Cauchy formula.
- 2. Spectrum of linear operator. Classification of points of a spectrum. Spectral radius. Substitution of a bounded linear operator into functions holomorphic on its spectrum. Banach algebras.
- 3. Spectral theory od selfadjoint and normal operators on Hilbert spaces.
- 4. Application of spactral theory.
- 5. Nonlinear functional analysis. Differential calculus on Banach spaces.
- 6. Degree of a mapping on Banach spaces and its applications.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- Dunford, N. - Schwartz, T. Linear operators. Part I: General theory. New York and London: Interscience Publishers. XIV, 1958, 858 p.
- ZEIDLER, Eberhard. Applied functional analysis : main principles and their applications. New York: Springer-Verlag, 1995, xvi, 404. ISBN 0387944222. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Test during the semester. Examination: written and oral. Requirements: to manage the theory from the lecture, to be able to solve the problems similar to those from exercises.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught once in two years.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2011
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 17:00–18:50 M6,01011
- Timetable of Seminar Groups:
- Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The aim of the course is to explain bases of theory of linear operators, spectral theory and theory of operator equations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Linear operators. Definition and examples. Bounded and continuous operators. Inverse operators. Adjoint operators. Compact operators.
- 2. Spectrum. Bases of the spectral analysis. Classification. Spectrum of the compact operator.
- 3. Operator equations. Fredholm theory. Riesz-Schauder theory. Applications.
- 4. Lerey-Schauder degree of mapping. Fixed point theorems. Solvabulity of nonlinear equations in Banach spaces.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- Dunford, N. - Schwartz, T. Linear operators. Part I: General theory. New York and London: Interscience Publishers. XIV, 1958, 858 p.
- DRÁBEK, Pavel and Jaroslav MILOTA. Methods of nonlinear analysis : applications to differential equations. Basel: Birkhäuser, 2007, xii, 568. ISBN 9783764381462. info
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- ZEIDLER, Eberhard. Applied functional analysis : main principles and their applications. New York: Springer-Verlag, 1995, xvi, 404. ISBN 0387944222. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hour a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught once in two years.
M7180 Linear Functional Analysis II
Faculty of ScienceAutumn 2009
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 16:00–17:50 M3,01023
- Timetable of Seminar Groups:
- Prerequisites
- M6150 Linear Functional Analysis I
Differential and integral calculus, Linear functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The aim of the course is to explain bases of theory of linear operators, spectral theory and theory of operator equations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Linear operators. Definition and examples. Bounded and continuous operators. Inverse operators. Adjoint operators. Compact operators. 2. Spectrum. Bases of the spectral analysis. Classification. Spectrum of the compact operator. 3. Operator equations. Fredholm theory. Riesz-Schauder theory. Applications.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- Dunford, N. - Schwartz, T. Linear operators. Part I: General theory. New York and London: Interscience Publishers. XIV, 1958, 858 p.
- ZEIDLER, Eberhard. Applied functional analysis : main principles and their applications. New York: Springer-Verlag, 1995, xvi, 404. ISBN 0387944222. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hour a week. Examination: written and oral.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught once in two years.
M7180 Linear Functional Analysis II
Faculty of ScienceAutumn 2007
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 13:00–14:50 UM
- Timetable of Seminar Groups:
- Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače s teorií lineárních operátorů, se základními pojmy spektrální analýzy a se základy teorie operátorových rovnic.
- Syllabus (in Czech)
- 1. Lineární operátory. Definice, příklady. Spojitost a ohraničenost. Invertovatelnost. Adjungované operátory. Adjungované operátory v unitárním prostoru. Kompaktní operátory. 2. Spektrum. Základní pojmy spektrální analýzy. Klasifikace bodů spektra. Spektrum kompaktního operátoru. 3. Operátorové rovnice. Fredholmové věty v Hilbertově prostoru. Ries-Schauderova teorie. Aplikace v teorii integrálních rovnic.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
M7180 Linear Functional Analysis II
Faculty of ScienceAutumn 2005
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Timetable
- Mon 17:00–18:50 UP2
- Timetable of Seminar Groups:
- Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače s teorií lineárních operátorů, se základními pojmy spektrální analýzy a se základy teorie operátorových rovnic.
- Syllabus (in Czech)
- 1. Lineární operátory. Definice, příklady. Spojitost a ohraničenost. Invertovatelnost. Adjungované operátory. Adjungované operátory v unitárním prostoru. Kompaktní operátory. 2. Spektrum. Základní pojmy spektrální analýzy. Klasifikace bodů spektra. Spektrum kompaktního operátoru. 3. Operátorové rovnice. Fredholmové věty v Hilbertově prostoru. Ries-Schauderova teorie. Aplikace v teorii integrálních rovnic.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught once in two years.
M7180 Linear Functional Analysis II
Faculty of ScienceAutumn 2003
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Timetable of Seminar Groups
- M7180/01: No timetable has been entered into IS. A. Lomtatidze
- Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače s teorií lineárních operátorů, se základními pojmy spektrální analýzy a se základy teorie operátorových rovnic.
- Syllabus (in Czech)
- 1. Lineární operátory. Definice, příklady. Spojitost a ohraničenost. Invertovatelnost. Adjungované operátory. Adjungované operátory v unitárním prostoru. Kompaktní operátory. 2. Spektrum. Základní pojmy spektrální analýzy. Klasifikace bodů spektra. Spektrum kompaktního operátoru. 3. Operátorové rovnice. Fredholmové věty v Hilbertově prostoru. Ries-Schauderova teorie. Aplikace v teorii integrálních rovnic.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught once in two years.
M7180 Linear Functional Analysis II
Faculty of ScienceAutumn 2001
- Extent and Intensity
- 2/1/0. 5 credit(s). Type of Completion: zk (examination).
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- 1.Spektrální teorie lineárních oprátorů - Základní pojmy spektrální analýzy z kursu LFA I - Klasifikace bodů spektra v konkrétních příkladech 2.Spektrální teorie kompaktních operátorů - Spektrální věta pro kompaktní operátory - Aplikace v teorii integrálních rovnic 3.Symetrické a samoadjungované operátory - Základní vlastnosti symetrických operátorů - Defektní čísla, samoadjungované rozšíření - Symetrické diferenciální operátory 4.Spektrální analýza samoadjungovaných operátorů - Spektrální věta 5.Diferenciální operátory - Singulární Sturm-Liouvilleův problém - LP/LC klasifikace
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
M7180 Linear Functional Analysis II
Faculty of ScienceAutumn 1999
- Extent and Intensity
- 2/1/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Syllabus (in Czech)
- 1.Spektrální teorie lineárních oprátorů - Základní pojmy spektrální analýzy z kursu LFA I - Klasifikace bodů spektra v konkrétních příkladech 2.Spektrální teorie kompaktních operátorů - Spektrální věta pro kompaktní operátory - Aplikace v teorii integrálních rovnic 3.Symetrické a samoadjungované operátory - Základní vlastnosti symetrických operátorů - Defektní čísla, samoadjungované rozšíření - Symetrické diferenciální operátory 4.Spektrální analýza samoadjungovaných operátorů - Spektrální věta 5.Diferenciální operátory - Singulární Sturm-Liouvilleův problém - LP/LC klasifikace
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2024
The course is not taught in Autumn 2024
- Extent and Intensity
- 2/1/0. 5 credit(s). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Peter Šepitka, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus. Functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The main aim of the course is to explain bases of the theory of linear operators and the derivative in Banach spaces.
- Learning outcomes
- At the end of the course students will be able to:
define and interpret the basic notions used in the mentioned fields;
formulate relevant mathematical theorems and statements and to explain methods of their proofs;
use effective techniques utilized in the subject areas;
analyse selected problems from the topics of the course. - Syllabus
- 0. Linear operators (repetition from the course Functional analysis I).
- 1. Compact operators.
- 2. Differential calculus in Banach spaces.
- 3. Strictly and uniformly convex spaces.
- 4. Degree of a mapping on Banach spaces. Fixed point theorems.
- 5. Integration of functions with values in Banach spaces.
- Literature
- recommended literature
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- LUKEŠ, Jaroslav. Úvod do funkcionální analýzy. 1. vyd. Praha: Karolinum, 2005, 106 s. ISBN 802460969X. info
- LUKEŠ, Jaroslav. Zápisky z funkcionální analýzy. 1. vyd. Praha: Karolinum, 2002, 354 s. ISBN 8071845973. info
- NAJZAR, Karel. Funkcionální analýza. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1975, 183 s. info
- STARÁ, Jana and Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- TAYLOR, Angus E. Úvod do funkcionální analýzy. Vyd. 1. Praha: Academia, 1973, 408 s. URL info
- Teaching methods
- Lectures, seminars
- Assessment methods
- Two-hour written final exam (it is needed to reach at least 50 % of points) with oral evaluation of the exam with each student.
The conditions (especially regarding the form of the exam) will be specified according to the epidemiological situation and valid restrictions. - Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2022
The course is not taught in Autumn 2022
- Extent and Intensity
- 2/1/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus. Functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The main aim of the course is to explain bases of the theory of linear operators and the derivative in Banach spaces.
- Learning outcomes
- At the end of the course students will be able to:
define and interpret the basic notions used in the mentioned fields;
formulate relevant mathematical theorems and statements and to explain methods of their proofs;
use effective techniques utilized in the subject areas;
analyse selected problems from the topics of the course. - Syllabus
- 0. Linear operators (repetition from the course Functional analysis I).
- 1. Compact operators.
- 2. Differential calculus in Banach spaces.
- 3. Strictly and uniformly convex spaces.
- 4. Degree of a mapping on Banach spaces. Fixed point theorems.
- 5. Integration of functions with values in Banach spaces.
- Literature
- recommended literature
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- LUKEŠ, Jaroslav. Úvod do funkcionální analýzy. 1. vyd. Praha: Karolinum, 2005, 106 s. ISBN 802460969X. info
- LUKEŠ, Jaroslav. Zápisky z funkcionální analýzy. 1. vyd. Praha: Karolinum, 2002, 354 s. ISBN 8071845973. info
- NAJZAR, Karel. Funkcionální analýza. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1975, 183 s. info
- STARÁ, Jana and Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- TAYLOR, Angus E. Úvod do funkcionální analýzy. Vyd. 1. Praha: Academia, 1973, 408 s. URL info
- Teaching methods
- Lectures, seminars
- Assessment methods
- The final oral exam (60 minutes) for 20 points. For successfull examination (the grade at least E), the student needs 10 points or more.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2020
The course is not taught in Autumn 2020
- Extent and Intensity
- 2/1/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Peter Šepitka, Ph.D. (lecturer)
doc. RNDr. Michal Veselý, Ph.D. (lecturer) - Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus. Functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The main aim of the course is to explain bases of the theory of linear operators and the derivative in Banach spaces.
- Learning outcomes
- At the end of the course students will be able to:
define and interpret the basic notions used in the mentioned fields;
formulate relevant mathematical theorems and statements and to explain methods of their proofs;
use effective techniques utilized in the subject areas;
analyse selected problems from the topics of the course. - Syllabus
- 0. Linear operators (repetition from the course Functional analysis I).
- 1. Compact operators.
- 2. Differential calculus in Banach spaces.
- 3. Strictly and uniformly convex spaces.
- 4. Degree of a mapping on Banach spaces. Fixed point theorems.
- 5. Integration of functions with values in Banach spaces.
- Literature
- recommended literature
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- LUKEŠ, Jaroslav. Úvod do funkcionální analýzy. 1. vyd. Praha: Karolinum, 2005, 106 s. ISBN 802460969X. info
- LUKEŠ, Jaroslav. Zápisky z funkcionální analýzy. 1. vyd. Praha: Karolinum, 2002, 354 s. ISBN 8071845973. info
- NAJZAR, Karel. Funkcionální analýza. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1975, 183 s. info
- STARÁ, Jana and Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- TAYLOR, Angus E. Úvod do funkcionální analýzy. Vyd. 1. Praha: Academia, 1973, 408 s. URL info
- Teaching methods
- Lectures, seminars
- Assessment methods
- The final oral exam (60 minutes) for 20 points. For successfull examination (the grade at least E), the student needs 10 points or more.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2018
The course is not taught in Autumn 2018
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Michal Veselý, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus. Functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The main aim of the course is to explain bases of the theory of linear operators and the derivative in Banach spaces.
- Learning outcomes
- At the end of the course students will be able to:
define and interpret the basic notions used in the mentioned fields;
formulate relevant mathematical theorems and statements and to explain methods of their proofs;
use effective techniques utilized in the subject areas;
analyse selected problems from the topics of the course. - Syllabus
- 0. Linear operators (repetition from the course Functional analysis I).
- 1. Compact operators.
- 2. Differential calculus in Banach spaces.
- 3. Strictly and uniformly convex spaces.
- 4. Degree of a mapping on Banach spaces. Fixed point theorems.
- 5. Integration of functions with values in Banach spaces.
- Literature
- recommended literature
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- LUKEŠ, Jaroslav. Úvod do funkcionální analýzy. 1. vyd. Praha: Karolinum, 2005, 106 s. ISBN 802460969X. info
- LUKEŠ, Jaroslav. Zápisky z funkcionální analýzy. 1. vyd. Praha: Karolinum, 2002, 354 s. ISBN 8071845973. info
- NAJZAR, Karel. Funkcionální analýza. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1975, 183 s. info
- STARÁ, Jana and Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- TAYLOR, Angus E. Úvod do funkcionální analýzy. Vyd. 1. Praha: Academia, 1973, 408 s. URL info
- Teaching methods
- Lectures, seminars
- Assessment methods
- The final oral exam (60 minutes) for 20 points. For successfull examination (the grade at least E), the student needs 10 points or more.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2016
The course is not taught in Autumn 2016
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Michal Veselý, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Michal Veselý, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus. Linear functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The main aim of the course is to explain bases of the theory of linear operators and the derivative in Banach spaces. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in this subject area; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Spectrum of linear operators (repetition from the course Functional analysis I).
- 2. Spectral theory of self-adjoint and symmetric operators.
- 3. Symmetric and self-adjoint operators in Hilbert spaces: Deficiency indices, self-adjoint extension of a symmetric operator.
- 4. Differential calculus in Banach spaces.
- 5. Strictly and uniformly convex spaces.
- 6. Integration of functions with values in Banach spaces.
- 7. Degree of a mapping on Banach spaces and its applications. Fixed point theorems.
- Literature
- recommended literature
- DRÁBEK, Pavel and Jaroslav MILOTA. Lectures on nonlinear analysis. 1. vyd. Plzeň: Vydavatelský servis, 2004, xi, 353. ISBN 8086843009. info
- STARÁ, Jana and Oldřich JOHN. Funkcionální analýza : nelineární úlohy. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 215 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Exam: oral. Requirements: to manage the theory from lectures and exercises.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2014
The course is not taught in Autumn 2014
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-MA)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The aim of the course is to explain bases of theory of linear operators, spectral theory and theory of linear and nonlinear operator equations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Integration of functions with values in Banach spaces. Bochner integral. Holomorphic functions with values in Banach spaces. Cauchy formula.
- 2. Spectrum of linear operator. Classification of points of a spectrum. Spectral radius. Substitution of a bounded linear operator into functions holomorphic on its spectrum. Banach algebras.
- 3. Spectral theory od selfadjoint and normal operators on Hilbert spaces.
- 4. Application of spactral theory.
- 5. Nonlinear functional analysis. Differential calculus on Banach spaces.
- 6. Degree of a mapping on Banach spaces and its applications.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- Dunford, N. - Schwartz, T. Linear operators. Part I: General theory. New York and London: Interscience Publishers. XIV, 1958, 858 p.
- ZEIDLER, Eberhard. Applied functional analysis : main principles and their applications. New York: Springer-Verlag, 1995, xvi, 404. ISBN 0387944222. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Test during the semester. Examination: written and oral. Requirements: to manage the theory from the lecture, to be able to solve the problems similar to those from exercises.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught once in two years.
The course is taught: every week.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2012
The course is not taught in Autumn 2012
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Martin Čadek, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The aim of the course is to explain bases of theory of linear operators, spectral theory and theory of operator equations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Linear operators. Definition and examples. Bounded and continuous operators. Inverse operators. Adjoint operators. Compact operators.
- 2. Spectrum. Bases of the spectral analysis. Classification. Spectrum of the compact operator.
- 3. Operator equations. Fredholm theory. Riesz-Schauder theory. Applications.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- Dunford, N. - Schwartz, T. Linear operators. Part I: General theory. New York and London: Interscience Publishers. XIV, 1958, 858 p.
- ZEIDLER, Eberhard. Applied functional analysis : main principles and their applications. New York: Springer-Verlag, 1995, xvi, 404. ISBN 0387944222. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hour a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught once in two years.
The course is taught: every week.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2010
The course is not taught in Autumn 2010
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Linear Functional Analysis I
Differential and integral calculus, Linear functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-AM)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The aim of the course is to explain bases of theory of linear operators, spectral theory and theory of operator equations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Linear operators. Definition and examples. Bounded and continuous operators. Inverse operators. Adjoint operators. Compact operators.
- 2. Spectrum. Bases of the spectral analysis. Classification. Spectrum of the compact operator.
- 3. Operator equations. Fredholm theory. Riesz-Schauder theory. Applications.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- Dunford, N. - Schwartz, T. Linear operators. Part I: General theory. New York and London: Interscience Publishers. XIV, 1958, 858 p.
- ZEIDLER, Eberhard. Applied functional analysis : main principles and their applications. New York: Springer-Verlag, 1995, xvi, 404. ISBN 0387944222. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hour a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught once in two years.
The course is taught: every week.
M7180 Linear Functional Analysis II
Faculty of ScienceAutumn 2008
The course is not taught in Autumn 2008
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Linear Functional Analysis I
Differential and integral calculus, Linear functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives
- The aim of the course is to explain bases of theory of linear operators, spectral theory and theory of operator equations.
- Syllabus
- 1. Linear operators. Definition and examples. Bounded and continuous operators. Inverse operators. Adjoint operators. Compact operators. 2. Spectrum. Bases of the spectral analysis. Classification. Spectrum of the compact operator. 3. Operator equations. Fredholm theory. Riesz-Schauder theory. Applications.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hour a week. Examination: written and oral.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week.
M7180 Linear Functional Analysis II
Faculty of ScienceAutumn 2006
The course is not taught in Autumn 2006
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače s teorií lineárních operátorů, se základními pojmy spektrální analýzy a se základy teorie operátorových rovnic.
- Syllabus (in Czech)
- 1. Lineární operátory. Definice, příklady. Spojitost a ohraničenost. Invertovatelnost. Adjungované operátory. Adjungované operátory v unitárním prostoru. Kompaktní operátory. 2. Spektrum. Základní pojmy spektrální analýzy. Klasifikace bodů spektra. Spektrum kompaktního operátoru. 3. Operátorové rovnice. Fredholmové věty v Hilbertově prostoru. Ries-Schauderova teorie. Aplikace v teorii integrálních rovnic.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
M7180 Linear Functional Analysis II
Faculty of ScienceAutumn 2004
The course is not taught in Autumn 2004
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače s teorií lineárních operátorů, se základními pojmy spektrální analýzy a se základy teorie operátorových rovnic.
- Syllabus (in Czech)
- 1. Lineární operátory. Definice, příklady. Spojitost a ohraničenost. Invertovatelnost. Adjungované operátory. Adjungované operátory v unitárním prostoru. Kompaktní operátory. 2. Spektrum. Základní pojmy spektrální analýzy. Klasifikace bodů spektra. Spektrum kompaktního operátoru. 3. Operátorové rovnice. Fredholmové věty v Hilbertově prostoru. Ries-Schauderova teorie. Aplikace v teorii integrálních rovnic.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
M7180 Linear Functional Analysis II
Faculty of ScienceAutumn 2000
The course is not taught in Autumn 2000
- Extent and Intensity
- 2/1/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- 1.Spektrální teorie lineárních oprátorů - Základní pojmy spektrální analýzy z kursu LFA I - Klasifikace bodů spektra v konkrétních příkladech 2.Spektrální teorie kompaktních operátorů - Spektrální věta pro kompaktní operátory - Aplikace v teorii integrálních rovnic 3.Symetrické a samoadjungované operátory - Základní vlastnosti symetrických operátorů - Defektní čísla, samoadjungované rozšíření - Symetrické diferenciální operátory 4.Spektrální analýza samoadjungovaných operátorů - Spektrální věta 5.Diferenciální operátory - Singulární Sturm-Liouvilleův problém - LP/LC klasifikace
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
M7180 Linear Functional Analysis II
Faculty of ScienceAutumn 2007 - for the purpose of the accreditation
- Extent and Intensity
- 2/1/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: prof. Alexander Lomtatidze, DrSc. - Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Mathematics (programme PřF, N-MA, specialization Mathematical Analysis)
- Course objectives (in Czech)
- Cílem předmětu je seznámit posluchače s teorií lineárních operátorů, se základními pojmy spektrální analýzy a se základy teorie operátorových rovnic.
- Syllabus (in Czech)
- 1. Lineární operátory. Definice, příklady. Spojitost a ohraničenost. Invertovatelnost. Adjungované operátory. Adjungované operátory v unitárním prostoru. Kompaktní operátory. 2. Spektrum. Základní pojmy spektrální analýzy. Klasifikace bodů spektra. Spektrum kompaktního operátoru. 3. Operátorové rovnice. Fredholmové věty v Hilbertově prostoru. Ries-Schauderova teorie. Aplikace v teorii integrálních rovnic.
- Literature
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2011 - acreditation
The course is not taught in Autumn 2011 - acreditation
The information about the term Autumn 2011 - acreditation is not made public
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- M6150 Functional Analysis I
Differential and integral calculus, Linear functional analysis I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-AM)
- Course objectives
- Functional analysis belongs to fundamental parts of university courses in mathematics. It is utilized by a number of other courses and in many applications. The aim of the course is to explain bases of theory of linear operators, spectral theory and theory of operator equations. At the end of the course students should be able to: to define and interpret the basic notions used in the fields mentioned above; to formulate relevant mathematical theorems and statements and to explain methods of their proofs; to use effective techniques utilized in these subject areas; to apply acquired pieces of knowledge for the solution of specific problems; to analyse selected problems from the topics of the course.
- Syllabus
- 1. Linear operators. Definition and examples. Bounded and continuous operators. Inverse operators. Adjoint operators. Compact operators.
- 2. Spectrum. Bases of the spectral analysis. Classification. Spectrum of the compact operator.
- 3. Operator equations. Fredholm theory. Riesz-Schauder theory. Applications.
- Literature
- Dunford, N. - Schwartz, T. Linear operators. Part I: General theory. New York and London: Interscience Publishers. XIV, 1958, 858 p.
- Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
- ZEIDLER, Eberhard. Applied functional analysis : main principles and their applications. New York: Springer-Verlag, 1995, xvi, 404. ISBN 0387944222. info
- KOLMOGOROV, Andrej Nikolajevič and Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
- Teaching methods
- lectures and class exercises
- Assessment methods
- Teaching: lecture 2 hours a week, seminar 1 hour a week. Examination: written and oral.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course is taught once in two years.
The course is taught: every week.
M7180 Functional Analysis II
Faculty of ScienceAutumn 2010 - only for the accreditation
The course is not taught in Autumn 2010 - only for the accreditation
- Extent and Intensity
- 2/1/0. 3 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. Alexander Lomtatidze, DrSc. (lecturer)
- Guaranteed by
- prof. Alexander Lomtatidze, DrSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites (in Czech)
- M6150 Linear Functional Analysis I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Algebra and Discrete Mathematics (programme PřF, N-MA)
- Geometry (programme PřF, N-MA)
- Mathematical Analysis (programme PřF, N-MA)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Statistics and Data Analysis (programme PřF, N-AM)
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week.
- Enrolment Statistics (recent)