M7960 Dynamické systémy
Přírodovědecká fakultajaro 2025
- Rozsah
- 2/2/0. 6 kr. Ukončení: zk.
Vyučováno kontaktně - Vyučující
- Mgr. Petr Liška, Ph.D. (přednášející)
doc. RNDr. Michal Veselý, Ph.D. (přednášející) - Garance
- doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie (program PřF, N-MA)
- Matematická analýza (program PřF, N-MA)
- Matematické modelování a numerické metody (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- doporučená literatura
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- neurčeno
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Písemná a ústní zkouška. Pro připuštění ke zkoušce je nutné odevzdat tři správně vyřešené sady domácích úkolů.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2024
- Rozsah
- 2/2/0. 6 kr. Ukončení: zk.
- Vyučující
- Mgr. Petr Liška, Ph.D. (přednášející)
doc. RNDr. Michal Veselý, Ph.D. (přednášející) - Garance
- doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 19. 2. až Ne 26. 5. Po 8:00–9:50 M5,01013
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie (program PřF, N-MA)
- Matematická analýza (program PřF, N-MA)
- Matematické modelování a numerické metody (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- doporučená literatura
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- neurčeno
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Písemná a ústní zkouška. Pro připuštění ke zkoušce je nutné odevzdat tři správně vyřešené sady domácích úkolů.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2023
- Rozsah
- 2/2/0. 6 kr. Ukončení: zk.
- Vyučující
- Mgr. Petr Liška, Ph.D. (přednášející)
doc. RNDr. Michal Veselý, Ph.D. (přednášející) - Garance
- doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 16:00–17:50 M2,01021
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie (program PřF, N-MA)
- Matematická analýza (program PřF, N-MA)
- Matematické modelování a numerické metody (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- doporučená literatura
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- neurčeno
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Písemná a ústní zkouška. Pro připuštění ke zkoušce je nutné odevzdat tři správně vyřešené sady domácích úkolů.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2022
- Rozsah
- 2/2/0. 6 kr. Ukončení: zk.
- Vyučující
- Mgr. Petr Liška, Ph.D. (přednášející)
doc. RNDr. Michal Veselý, Ph.D. (přednášející) - Garance
- doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 12:00–13:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie (program PřF, N-MA)
- Matematická analýza (program PřF, N-MA)
- Matematické modelování a numerické metody (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- doporučená literatura
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- neurčeno
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Písemná a ústní zkouška. Pro připuštění ke zkoušce je nutné odevzdat tři správně vyřešené sady domácích úkolů.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2021
- Rozsah
- 2/2/0. 6 kr. Ukončení: zk.
- Vyučující
- Mgr. Petr Liška, Ph.D. (přednášející)
- Garance
- doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 1. 3. až Pá 14. 5. Út 16:00–17:50 online_M4
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie (program PřF, N-MA)
- Matematická analýza (program PřF, N-MA)
- Matematické modelování a numerické metody (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- doporučená literatura
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- neurčeno
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Písemná a ústní zkouška. Pro připuštění ke zkoušce je nutné odevzdat tři správně vyřešené sady domácích úkolů.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2020
- Rozsah
- 2/2/0. 6 kr. Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 8:00–9:50 M3,01023
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie (program PřF, N-MA)
- Matematická analýza (program PřF, N-MA)
- Matematické modelování a numerické metody (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
- Výstupy z učení
- Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- doporučená literatura
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- neurčeno
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
- Další komentáře
- Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2019
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 18. 2. až Pá 17. 5. Út 8:00–9:50 M3,01023
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie (program PřF, N-MA)
- Matematická analýza (program PřF, N-MA)
- Matematické modelování a numerické metody (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- doporučená literatura
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- neurčeno
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2018
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 8:00–9:50 M4,01024
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie (program PřF, N-MA)
- Matematická analýza (program PřF, N-MA)
- Matematické modelování a numerické metody (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- doporučená literatura
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- neurčeno
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
- Další komentáře
- Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2017
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 20. 2. až Po 22. 5. Út 8:00–9:50 M6,01011
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie (program PřF, N-MA)
- Matematická analýza (program PřF, N-MA)
- Matematické modelování a numerické metody (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- doporučená literatura
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- neurčeno
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
- Další komentáře
- Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2016
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 8:00–9:50 M3,01023
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie (program PřF, N-MA)
- Matematická analýza (program PřF, N-MA)
- Matematické modelování a numerické metody (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- doporučená literatura
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- neurčeno
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2015
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 8:00–9:50 MS1,01016
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
- Další komentáře
- Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2014
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 8:00–9:50 M3,01023
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
- Další komentáře
- Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2013
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 8:00–9:50 MS1,01016
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Výuka: přednáška 2 hod. týdně, cvičení 2 hod. týdně. Zkouška: písemná a ústní.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
- Další komentáře
- Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2012
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 8:00–9:50 M6,01011
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Výuka: přednáška 2 hod. týdně, cvičení 2 hod. týdně. Zkouška: písemná a ústní.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
- Další komentáře
- Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2011
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Čt 8:00–9:50 M6,01011
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Výuka: přednáška 2 hod. týdně, cvičení 2 hod. týdně. Zkouška: písemná a ústní.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
- Další komentáře
- Předmět je vyučován každoročně.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2006
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Ladislav Adamec, CSc. (přednášející)
- Garance
- doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc. - Rozvrh
- Čt 10:00–11:50 UP1
- Předpoklady
- Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, D-MA)
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů, drobné seznámení s nelineárními jevy a chaosem.
- Osnova
- 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
- Metody hodnocení
- Předmět je zakončen ústní zkouškou.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
M7960 Dynamické systémy
Přírodovědecká fakultapodzim 2003
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Ladislav Adamec, CSc. (přednášející)
- Garance
- doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc. - Předpoklady
- Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, D-MA)
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů.
- Osnova
- 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
- Metody hodnocení
- Předmět je zakončen zkouškou.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2010
Předmět se v období jaro 2010 nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Ladislav Adamec, CSc. (přednášející)
- Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů jak diskrétních tak spojitých. V průbehu absolvování si studenti osvojí základní techniky používané v kvalitativni teorii dynamických systémů.
- Osnova
- Dynamické systemy v přírodě a v matematice,
- dynamika jednodimenzionálních systémů (kvadratická zobrazení),
- rekurence a chaos (věta Sarkovského),
- analýza řešení s okolí kritického bodu (věta Harman Grobhamova, věta o invariantních varietách),
- okolí periodických řešení,
- příklady hyperbolických atraktorů (shifty, Smaleho podkova, solenoid, Lorenz;v atraktor).
- Literatura
- KATOK, A. B., Boris HASSELBLATT a Leonardo MENDOZA. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995, xviii, 802. ISBN 0521341876. info
- Výukové metody
- Přednáška - theoretická příprava
- Metody hodnocení
- ústní zkouška
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2009
Předmět se v období jaro 2009 nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Ladislav Adamec, CSc. (přednášející)
- Garance
- doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, D-MA)
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů jak diskrétních tak spojitých. V průbehu absolvování si studenti osvojí základní techniky používané v kvalitativni teorii dynamických systémů.
- Osnova
- Dynamické systemy v přírodě a v matematice,
- dynamika jednodimenzionálních systémů (kvadratická zobrazení),
- rekurence a chaos (věta Sarkovského),
- analýza řešení s okolí kritického bodu (věta Harman Grobhamova, věta o invariantních varietách),
- okolí periodických řešení,
- příklady hyperbolických atraktorů (shifty, Smaleho podkova, solenoid, Lorenz;v atraktor).
- Literatura
- KATOK, A. B., Boris HASSELBLATT a Leonardo MENDOZA. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995, xviii, 802. ISBN 0521341876. info
- Metody hodnocení
- ústní zkouška
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2008
Předmět se v období jaro 2008 nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Garance
- doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, N-MA)
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2007
Předmět se v období jaro 2007 nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Ladislav Adamec, CSc. (přednášející)
- Garance
- doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, D-MA)
- Matematická analýza (program PřF, N-MA)
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
M7960 Dynamické systémy
Přírodovědecká fakultapodzim 2005
Předmět se v období podzim 2005 nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Ladislav Adamec, CSc. (přednášející)
- Garance
- doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc. - Předpoklady
- Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, D-MA)
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů.
- Osnova
- 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
- Metody hodnocení
- Předmět je zakončen zkouškou.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
M7960 Dynamické systémy
Přírodovědecká fakultapodzim 2004
Předmět se v období podzim 2004 nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Ladislav Adamec, CSc. (přednášející)
- Garance
- doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc. - Předpoklady
- Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, D-MA)
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů.
- Osnova
- 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
- Metody hodnocení
- Předmět je zakončen zkouškou.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2012 - akreditace
Údaje z období jaro 2012 - akreditace se nezveřejňují
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Předpoklady
- Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
- Osnova
- 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
- 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
- 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
- 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
- Literatura
- VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
- PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
- BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
- Výukové metody
- přednášky a cvičení
- Metody hodnocení
- Výuka: přednáška 2 hod. týdně, cvičení 2 hod. týdně. Zkouška: písemná a ústní.
- Informace učitele
- Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2011 - akreditace
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Josef Kalas, CSc. (přednášející)
- Garance
- doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, N-MA)
- Cíle předmětu
- Kurz je úvodem do teorie dynamických systémů jak diskrétních tak spojitých. V průbehu absolvování si studenti osvojí základní techniky používané v kvalitativni teorii dynamických systémů.
- Osnova
- Dynamické systemy v přírodě a v matematice,
- dynamika jednodimenzionálních systémů (kvadratická zobrazení),
- rekurence a chaos (věta Sarkovského),
- analýza řešení s okolí kritického bodu (věta Harman Grobhamova, věta o invariantních varietách),
- okolí periodických řešení,
- příklady hyperbolických atraktorů (shifty, Smaleho podkova, solenoid, Lorenz;v atraktor).
- Literatura
- KATOK, A. B., Boris HASSELBLATT a Leonardo MENDOZA. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995, xviii, 802. ISBN 0521341876. info
- Výukové metody
- Přednáška - theoretická příprava
- Metody hodnocení
- ústní zkouška
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
M7960 Dynamické systémy
Přírodovědecká fakultajaro 2008 - akreditace
Předmět se v období jaro 2008 - akreditace nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Ladislav Adamec, CSc. (přednášející)
- Garance
- doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická analýza (program PřF, D-MA)
- Matematická analýza (program PřF, N-MA)
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
- Statistika zápisu (nejnovější)