M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2025
Rozsah
2/2/0. 6 kr. Ukončení: zk.
Vyučováno kontaktně
Vyučující
Mgr. Petr Liška, Ph.D. (přednášející)
doc. RNDr. Michal Veselý, Ph.D. (přednášející)
Garance
doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
Výstupy z učení
Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
    doporučená literatura
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
    neurčeno
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Písemná a ústní zkouška. Pro připuštění ke zkoušce je nutné odevzdat tři správně vyřešené sady domácích úkolů.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2024
Rozsah
2/2/0. 6 kr. Ukončení: zk.
Vyučující
Mgr. Petr Liška, Ph.D. (přednášející)
doc. RNDr. Michal Veselý, Ph.D. (přednášející)
Garance
doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 19. 2. až Ne 26. 5. Po 8:00–9:50 M5,01013
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Po 19. 2. až Ne 26. 5. Út 12:00–13:50 M6,01011, P. Liška
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
Výstupy z učení
Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
    doporučená literatura
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
    neurčeno
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Písemná a ústní zkouška. Pro připuštění ke zkoušce je nutné odevzdat tři správně vyřešené sady domácích úkolů.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2023
Rozsah
2/2/0. 6 kr. Ukončení: zk.
Vyučující
Mgr. Petr Liška, Ph.D. (přednášející)
doc. RNDr. Michal Veselý, Ph.D. (přednášející)
Garance
doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 16:00–17:50 M2,01021
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Út 12:00–13:50 M4,01024, P. Liška
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
Výstupy z učení
Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
    doporučená literatura
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
    neurčeno
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Písemná a ústní zkouška. Pro připuštění ke zkoušce je nutné odevzdat tři správně vyřešené sady domácích úkolů.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2022
Rozsah
2/2/0. 6 kr. Ukončení: zk.
Vyučující
Mgr. Petr Liška, Ph.D. (přednášející)
doc. RNDr. Michal Veselý, Ph.D. (přednášející)
Garance
doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 12:00–13:50 M1,01017
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Čt 8:00–9:50 M6,01011, P. Liška
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
Výstupy z učení
Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
    doporučená literatura
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
    neurčeno
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Písemná a ústní zkouška. Pro připuštění ke zkoušce je nutné odevzdat tři správně vyřešené sady domácích úkolů.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2021
Rozsah
2/2/0. 6 kr. Ukončení: zk.
Vyučující
Mgr. Petr Liška, Ph.D. (přednášející)
Garance
doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 1. 3. až Pá 14. 5. Út 16:00–17:50 online_M4
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Po 1. 3. až Pá 14. 5. St 12:00–13:50 online_M3, P. Liška
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
Výstupy z učení
Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
    doporučená literatura
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
    neurčeno
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Písemná a ústní zkouška. Pro připuštění ke zkoušce je nutné odevzdat tři správně vyřešené sady domácích úkolů.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2020
Rozsah
2/2/0. 6 kr. Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 8:00–9:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Út 10:00–11:50 M3,01023, J. Kalas
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí.
Výstupy z učení
Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
    doporučená literatura
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
    neurčeno
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • EDELSTEIN-KESHET, Leah. Mathematical models in biology. Philadelphia: Society for Industrial and Applied Mathematics, 2005, xliii, 586. ISBN 0898715547. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů. Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty. Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky. Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2019
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 18. 2. až Pá 17. 5. Út 8:00–9:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Po 18. 2. až Pá 17. 5. Út 10:00–11:50 M3,01023, J. Kalas
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
    doporučená literatura
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
    neurčeno
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Předmět je vyučován jednou za dva roky.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2018
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 M4,01024
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Čt 10:00–11:50 M4,01024, J. Kalas
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
    doporučená literatura
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
    neurčeno
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2017
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 20. 2. až Po 22. 5. Út 8:00–9:50 M6,01011
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Po 20. 2. až Po 22. 5. Út 10:00–11:50 M6,01011, J. Kalas
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
    doporučená literatura
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
    neurčeno
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2016
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Čt 10:00–11:50 M3,01023, J. Kalas
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
    doporučená literatura
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
    neurčeno
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2015
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 8:00–9:50 MS1,01016
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Út 10:00–11:50 MS1,01016, J. Kalas
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2014
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 8:00–9:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Po 10:00–11:50 M3,01023, J. Kalas
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení, kde se bude během semestru psát jedna písemka. Je třeba dosáhnout aspoň 50% bodů. Zkouška sestává z písemné a ústní části. Písemná část je tvořena třemi příklady. Je třeba získat aspoň 1,5 bodu ze tří možných.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2013
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 MS1,01016
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Čt 10:00–11:50 MS1,01016, J. Kalas
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Výuka: přednáška 2 hod. týdně, cvičení 2 hod. týdně. Zkouška: písemná a ústní.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2012
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 M6,01011
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Čt 10:00–11:50 M6,01011, J. Kalas
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Výuka: přednáška 2 hod. týdně, cvičení 2 hod. týdně. Zkouška: písemná a ústní.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2011
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 M6,01011
  • Rozvrh seminárních/paralelních skupin:
M7960/01: Čt 10:00–11:50 M6,01011, J. Kalas
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Výuka: přednáška 2 hod. týdně, cvičení 2 hod. týdně. Zkouška: písemná a ústní.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2006
Rozsah
2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Ladislav Adamec, CSc. (přednášející)
Garance
doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc.
Rozvrh
Čt 10:00–11:50 UP1
Předpoklady
Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů, drobné seznámení s nelineárními jevy a chaosem.
Osnova
  • 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
Metody hodnocení
Předmět je zakončen ústní zkouškou.
Další komentáře
Předmět je vyučován jednou za dva roky.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
podzim 2003
Rozsah
2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Ladislav Adamec, CSc. (přednášející)
Garance
doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc.
Předpoklady
Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů.
Osnova
  • 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
Metody hodnocení
Předmět je zakončen zkouškou.
Další komentáře
Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2010

Předmět se v období jaro 2010 nevypisuje.

Rozsah
2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Ladislav Adamec, CSc. (přednášející)
Garance
prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů jak diskrétních tak spojitých. V průbehu absolvování si studenti osvojí základní techniky používané v kvalitativni teorii dynamických systémů.
Osnova
  • Dynamické systemy v přírodě a v matematice,
  • dynamika jednodimenzionálních systémů (kvadratická zobrazení),
  • rekurence a chaos (věta Sarkovského),
  • analýza řešení s okolí kritického bodu (věta Harman Grobhamova, věta o invariantních varietách),
  • okolí periodických řešení,
  • příklady hyperbolických atraktorů (shifty, Smaleho podkova, solenoid, Lorenz;v atraktor).
Literatura
  • KATOK, A. B., Boris HASSELBLATT a Leonardo MENDOZA. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995, xviii, 802. ISBN 0521341876. info
Výukové metody
Přednáška - theoretická příprava
Metody hodnocení
ústní zkouška
Další komentáře
Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2009

Předmět se v období jaro 2009 nevypisuje.

Rozsah
2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Ladislav Adamec, CSc. (přednášející)
Garance
doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů jak diskrétních tak spojitých. V průbehu absolvování si studenti osvojí základní techniky používané v kvalitativni teorii dynamických systémů.
Osnova
  • Dynamické systemy v přírodě a v matematice,
  • dynamika jednodimenzionálních systémů (kvadratická zobrazení),
  • rekurence a chaos (věta Sarkovského),
  • analýza řešení s okolí kritického bodu (věta Harman Grobhamova, věta o invariantních varietách),
  • okolí periodických řešení,
  • příklady hyperbolických atraktorů (shifty, Smaleho podkova, solenoid, Lorenz;v atraktor).
Literatura
  • KATOK, A. B., Boris HASSELBLATT a Leonardo MENDOZA. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995, xviii, 802. ISBN 0521341876. info
Metody hodnocení
ústní zkouška
Další komentáře
Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2008

Předmět se v období jaro 2008 nevypisuje.

Rozsah
2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
Garance
doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Další komentáře
Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2007

Předmět se v období jaro 2007 nevypisuje.

Rozsah
2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Ladislav Adamec, CSc. (přednášející)
Garance
doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Další komentáře
Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
podzim 2005

Předmět se v období podzim 2005 nevypisuje.

Rozsah
2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Ladislav Adamec, CSc. (přednášející)
Garance
doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc.
Předpoklady
Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů.
Osnova
  • 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
Metody hodnocení
Předmět je zakončen zkouškou.
Další komentáře
Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
podzim 2004

Předmět se v období podzim 2004 nevypisuje.

Rozsah
2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Ladislav Adamec, CSc. (přednášející)
Garance
doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc.
Předpoklady
Matematická analýza (diferenciální a integrální počet, věta o implicitní funkci). Lineární algebra (matice). Základy z obyčejných diferenciálních rovnic.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Vzhledem k možnému rozsahu spíše základní kurs dynamických systémů.
Osnova
  • 1)Úvod, motivační přiklady, základní pojmy. 2)Jednodimenzionální diskrétní dynamické systémy. 3)Lineární systémy. 4)Analýza pevných bodů a periodických orbit. 5)Hyperbolické systémy.
Metody hodnocení
Předmět je zakončen zkouškou.
Další komentáře
Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2012 - akreditace

Údaje z období jaro 2012 - akreditace se nezveřejňují

Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
Obyčejné diferenciální rovnice: Lineární a nelineární systémy diferenciálních rovnic, existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech, základy teorie stability.
Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů. Pozornost je věnována zejména spojitým dynamickým systémům, teorii autonomních systémů diferenciálních rovnic a matematickému modelování. Cílem kursu je seznámit studenty s vybranými partiemi výše uvedených oblastí. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních situací; analyzovat vybrané matematické dynamické deterministické modely.
Osnova
  • 1. Přehled vybraných výsledků z teorie obyčejných diferenciálních rovnic.
  • 2. Autonomní rovnice - základní pojmy a vlastnosti, elementární typy singulárních bodů dvojrozměrných systémů, klasifikace singulárních bodů lineárních a perturbovaných lineárních systémů, struktura limitní množiny v R2, Poincaré-Bendixsonova věta, Dulacovo kritérium, charakteristické směry.
  • 3. Obecné pojetí dynamického systému, spojité a diskrétní dynamické systémy.
  • 4. Matematické modely, klasifikace modelů, základní etapy procesu matematického modelování, sestavení matematického modelu, dimenzionální a matematická analýza matematických modelů, vybrané matematické modely v přírodních vědách.
Literatura
  • VERHULST, Ferdinand. Nonlinear differential equations and dynamical systems. Berlin: Springer Verlag, 1990, 277 s. ISBN 3-540-50628-4. info
  • PERKO, Lawrence. Differential equations and dynamical systems. 2nd ed. New York: Springer-Verlag, 1996, xiv, 519. ISBN 0387947787. info
  • KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita, 2001, vii, 256. ISBN 802102626X. info
  • BRAUN, Martin. Differential equations and their applications : an introduction to applied mathematics. 2nd ed. New York: Springer-Verlag, 1978, xiii, 518. ISBN 0-387-90266-X. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Výuka: přednáška 2 hod. týdně, cvičení 2 hod. týdně. Zkouška: písemná a ústní.
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Nutnou podmínkou pro absolvování zkoušky je udělení zápočtu. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2011 - akreditace
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je úvodem do teorie dynamických systémů jak diskrétních tak spojitých. V průbehu absolvování si studenti osvojí základní techniky používané v kvalitativni teorii dynamických systémů.
Osnova
  • Dynamické systemy v přírodě a v matematice,
  • dynamika jednodimenzionálních systémů (kvadratická zobrazení),
  • rekurence a chaos (věta Sarkovského),
  • analýza řešení s okolí kritického bodu (věta Harman Grobhamova, věta o invariantních varietách),
  • okolí periodických řešení,
  • příklady hyperbolických atraktorů (shifty, Smaleho podkova, solenoid, Lorenz;v atraktor).
Literatura
  • KATOK, A. B., Boris HASSELBLATT a Leonardo MENDOZA. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995, xviii, 802. ISBN 0521341876. info
Výukové metody
Přednáška - theoretická příprava
Metody hodnocení
ústní zkouška
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M7960 Dynamické systémy

Přírodovědecká fakulta
jaro 2008 - akreditace

Předmět se v období jaro 2008 - akreditace nevypisuje.

Rozsah
2/0/0. 2 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Ladislav Adamec, CSc. (přednášející)
Garance
doc. RNDr. Ladislav Adamec, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Ladislav Adamec, CSc.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Další komentáře
Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, podzim 2003, jaro 2006, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.