PřF:M7985 Analýza přežití - Informace o předmětu
M7985 Analýza přežití
Přírodovědecká fakultajaro 2025
- Rozsah
- 2/2/0. 6 kr. Ukončení: zk.
Vyučováno kontaktně - Vyučující
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (přednášející)
RNDr. Bc. Iveta Selingerová, Ph.D. (cvičící) - Garance
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Předmět se zabývá statistickými metodami zkoumání výskytu událostí v čase. Na konci tohoto kurzu bude student schopen (1) porozumět a vysvětlit metody neparametrické a (semi)parametrické statistické inference a statistického modelování pro (ne)cenzurovaná data; (2) implementovat tyto metody v jazyce R; (3) aplikovat je na konkrétních datech.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- porozumnět věrohodnosti, neparametrické statistické inferenci a (semi)parametrickým statistickým modelům pro (ne)cenzorovaná data o zlyháni/úmrtí v čase;
- navrhnout a vysvětlit vhodné neparametrické statistické testy a (semi)parametrické modely pro (ne)cenzorovaná data o zlyháni/úmrtí v čase;
- aplikovat metody neparametrické statistické inference a (semi)parametrické modely na reálná (ne)cenzorovaná data o zlyháni/úmrtí v čase;
- implementovat metody neparametrické statistické inference pro (ne)cenzorovaná data o zlyháni/úmrtí v čase do R. - Osnova
- Cenzorování a jeho typy.
- Věrohodnostní funkce.
- Funkce přežití a její rozptyl, riziko, kumulativní riziko, střední hodnota a medián přežití, střední hodnota a medián zůstatkového života, bodové odhady, intervaly a pásy spolehlivosti. Konkurující si rizika, kumulatívní incidenční funkce.
- Testování hypotéz – porovnání dvou a více křivek přežitím relativní riziko, neparametrický přístup pro necenzorovaná a cenzorovaná data.
- Zobecnění neparametrických koleračních koeficientů pro případy testování hypotéz o křivkách přežití.
- Coxův regresní model proporcionálních rizik.
- Implementace v R.
- Příklady v jazyce R. Aplikace na reálná data z biologie, medicíny a jiných oborů.
- Literatura
- KLEIN, John P. a Melvin L. MOESCHBERGER. Survival analysis : techniques for censored and truncated data. 2nd ed. New York: Springer, 2003, xv, 536. ISBN 9781441929853. info
- Výukové metody
- Přednáška: 2 hod. týdně.
Cvičení: 2 hod. týdně. Online přes MS Teams nebo prezenčně podle vývoje epidemiologické situace a platných omezení. - Metody hodnocení
- Domácí úkoly, ústní zkouška. Podmínky mohou být upřesněny podle vývoje epidemiologické situace a platných omezení.
- Informace učitele
- Přednášky budou probíhat prezenčně dle rozvrhu. V IS bude vždy k dispozici záznam textu přednášky v PDF (přednášející text píše elektronickým perem na obrazovce tabletu a tento se zobrazuje na plátně) a slajdy v PDF s TeXovaným textem. Záznamy se budou sdílet až po dané přednášce a před další přednáškou.
K získání zápočtu je potřeba aktivní účast na cvičeních (povolené jsou 2 neomluvené absence). Za omluvenou absenci se považuje výhradně absence omluvená na studijním oddělení a zavedená do informačního systému v řádném termínu (do 5 pracovních dnů od termínu konání výuky). Je to v souladu se studijním řádem, kde se v čl.9 odstavci (7) píše, že (7) Student je povinen písemně omluvit na studijním oddělení fakulty svou neúčast do 5 pracovních dnů od termínu konání výuky, jež je omlouvána. - Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
- Statistika zápisu (nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/jaro2025/M7985