M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2025
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučováno kontaktně
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty, distribuční funkce, regresní funkce a dvourozměrných hustot.
Výstupy z učení
Student bude po absolvování předmětu schopen:
- provést analýzu daného souboru reálných dat;
- navrhnout vhodnou metodu pro jejich zpracování;
- provést implementaci a počítačové zpracování;
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami. Všechny uvedené metody jsou implementovány v Matlabu.Příslušný toolbox je dostupný na adrese https://www.math.muni.cz/veda-a-vyzkum/vyvijeny-software/274-matlab-toolbox.html
Literatura
    doporučená literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
  • HOROVÁ, Ivanka, Jan KOLÁČEK a Jiří ZELINKA. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012, 244 s. ISBN 978-981-4405-48-5. URL info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno použitím vytvořeného toolboxu v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024.

M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2024
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. Mgr. Jan Koláček, Ph.D. (přednášející)
prof. RNDr. Ivanka Horová, CSc. (náhr. zkoušející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 19. 2. až Ne 26. 5. St 10:00–11:50 M6,01011
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Po 19. 2. až Ne 26. 5. St 12:00–12:50 MP1,01014, J. Koláček
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty, distribuční funkce, regresní funkce a dvourozměrných hustot.
Výstupy z učení
Student bude po absolvování předmětu schopen:
- provést analýzu daného souboru reálných dat;
- navrhnout vhodnou metodu pro jejich zpracování;
- provést implementaci a počítačové zpracování;
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami. Všechny uvedené metody jsou implementovány v Matlabu.Příslušný toolbox je dostupný na adrese https://www.math.muni.cz/veda-a-vyzkum/vyvijeny-software/274-matlab-toolbox.html
Literatura
    doporučená literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
  • HOROVÁ, Ivanka, Jan KOLÁČEK a Jiří ZELINKA. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012, 244 s. ISBN 978-981-4405-48-5. URL info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno použitím vytvořeného toolboxu v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2025.

M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2023
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 10:00–11:50 M4,01024
  • Rozvrh seminárních/paralelních skupin:
M8113/01: St 12:00–12:50 MP2,01014a, J. Koláček
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty, distribuční funkce, regresní funkce a dvourozměrných hustot.
Výstupy z učení
Student bude po absolvování předmětu schopen:
- provést analýzu daného souboru reálných dat;
- navrhnout vhodnou metodu pro jejich zpracování;
- provést implementaci a počítačové zpracování;
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami. Všechny uvedené metody jsou implementovány v Matlabu.Příslušný toolbox je dostupný na adrese https://www.math.muni.cz/veda-a-vyzkum/vyvijeny-software/274-matlab-toolbox.html
Literatura
    doporučená literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
  • HOROVÁ, Ivanka, Jan KOLÁČEK a Jiří ZELINKA. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012, 244 s. ISBN 978-981-4405-48-5. URL info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno použitím vytvořeného toolboxu v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2024, jaro 2025.

M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2022
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 8:00–9:50 M6,01011
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Út 12:00–12:50 MP2,01014a, J. Koláček
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty, distribuční funkce, regresní funkce a dvourozměrných hustot.
Výstupy z učení
Student bude po absolvování předmětu schopen:
- provést analýzu daného souboru reálných dat;
- navrhnout vhodnou metodu pro jejich zpracování;
- provést implementaci a počítačové zpracování;
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami. Všechny uvedené metody jsou implementovány v Matlabu.Příslušný toolbox je dostupný na adrese https://www.math.muni.cz/veda-a-vyzkum/vyvijeny-software/274-matlab-toolbox.html
Literatura
    doporučená literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
  • HOROVÁ, Ivanka, Jan KOLÁČEK a Jiří ZELINKA. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012, 244 s. ISBN 978-981-4405-48-5. URL info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno použitím vytvořeného toolboxu v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2023, jaro 2024, jaro 2025.

M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2021
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 1. 3. až Pá 14. 5. Út 8:00–9:50 online_M3
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Po 1. 3. až Pá 14. 5. Čt 12:00–12:50 online_MP1, J. Koláček
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty, distribuční funkce, regresní funkce a dvourozměrných hustot.
Výstupy z učení
Student bude po absolvování předmětu schopen:
- provést analýzu daného souboru reálných dat;
- navrhnout vhodnou metodu pro jejich zpracování;
- provést implementaci a počítačové zpracování;
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami. Všechny uvedené metody jsou implementovány v Matlabu.Příslušný toolbox je dostupný na adrese https://www.math.muni.cz/veda-a-vyzkum/vyvijeny-software/274-matlab-toolbox.html
Literatura
    doporučená literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
  • HOROVÁ, Ivanka, Jan KOLÁČEK a Jiří ZELINKA. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012, 244 s. ISBN 978-981-4405-48-5. URL info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno použitím vytvořeného toolboxu v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2020
Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 8:00–9:50 M6,01011
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Čt 12:00–12:50 MP1,01014, J. Koláček
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty, distribuční funkce, regresní funkce a dvourozměrných hustot.
Výstupy z učení
Student bude po absolvování předmětu schopen:
- provést analýzu daného souboru reálných dat;
- navrhnout vhodnou metodu pro jejich zpracování;
- provést implementaci a počítačové zpracování;
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami. Všechny uvedené metody jsou implementovány v Matlabu.Příslušný toolbox je dostupný na adrese https://www.math.muni.cz/veda-a-vyzkum/vyvijeny-software/274-matlab-toolbox.html
Literatura
    doporučená literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
  • HOROVÁ, Ivanka, Jan KOLÁČEK a Jiří ZELINKA. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012, 244 s. ISBN 978-981-4405-48-5. URL info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno použitím vytvořeného toolboxu v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Informace učitele
Výuka probíhá většinou v češtině nebo dle potřeby v angličtině, příslušná terminologie je za všech okolností uváděna i s anglickými ekvivalenty.
Mezi cílové dovednosti studia patří schopnost používat anglický jazyk pasivně i aktivně ve vlastní odbornosti a také v potenciálních oblastech aplikací matematiky.
Hodnocení ve všech případech může probíhat v češtině i v angličtině, dle volby studenta.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2019
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 18. 2. až Pá 17. 5. Čt 8:00–9:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Po 18. 2. až Pá 17. 5. St 12:00–12:50 MP1,01014, J. Koláček
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty, distribuční funkce, regresní funkce a dvourozměrných hustot. Po absolvování tohoto kurzu bude student schopen aplikovat tyto metody při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami. Všechny uvedené metody jsou implementovány v Matlabu.Příslušný toolbox je dostupný na adrese https://www.math.muni.cz/veda-a-vyzkum/vyvijeny-software/274-matlab-toolbox.html
Literatura
    doporučená literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
  • HOROVÁ, Ivanka, Jan KOLÁČEK a Jiří ZELINKA. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012, 244 s. ISBN 978-981-4405-48-5. URL info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno použitím vytvořeného toolboxu v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Další komentáře
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2018
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 12:00–13:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M8113/01: St 14:00–14:50 MP1,01014, J. Koláček
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty, distribuční funkce, regresní funkce a dvourozměrných hustot. Po absolvování tohoto kurzu bude student schopen aplikovat tyto metody při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami. Všechny uvedené metody jsou implementovány v Matlabu.Příslušný toolbox je dostupný na adrese https://www.math.muni.cz/veda-a-vyzkum/vyvijeny-software/274-matlab-toolbox.html
Literatura
    doporučená literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
  • HOROVÁ, Ivanka, Jan KOLÁČEK a Jiří ZELINKA. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012, 244 s. ISBN 978-981-4405-48-5. URL info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno použitím vytvořeného toolboxu v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2017
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 20. 2. až Po 22. 5. St 8:00–9:50 M2,01021
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Po 20. 2. až Po 22. 5. Pá 12:00–12:50 MP1,01014
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty, distribuční funkce, regresní funkce a dvourozměrných hustot. Po absolvování tohoto kurzu bude student schopen aplikovat tyto metody při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami. Všechny uvedené metody jsou implementovány v Matlabu.Příslušný toolbox je dostupný na adrese https://www.math.muni.cz/veda-a-vyzkum/vyvijeny-software/274-matlab-toolbox.html
Literatura
    doporučená literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
  • HOROVÁ, Ivanka, Jan KOLÁČEK a Jiří ZELINKA. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012, 244 s. ISBN 978-981-4405-48-5. URL info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno použitím vytvořeného toolboxu v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2016
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 12:00–13:50 M5,01013
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Čt 15:00–15:50 MP1,01014, J. Koláček
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty, distribuční funkce, regresní funkce a dvourozměrných hustot. Po absolvování tohoto kurzu bude student schopen aplikovat tyto metody při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami. Všechny uvedené metody jsou implementovány v Matlabu.Příslušný toolbox je dostupný na adrese https://www.math.muni.cz/veda-a-vyzkum/vyvijeny-software/274-matlab-toolbox.html
Literatura
    doporučená literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno použitím vytvořeného toolboxu v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Navazující předměty
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2015
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 8:00–9:50 MS1,01016
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Po 14:00–14:50 MP2,01014a
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Teorie a metody vyhlazování se rozvíjí hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů se umožnila dívat na data způsobem, který dříve nebyl možný. Moderní počítače nyní dovolují značnou volnost v rozhodování, jak by se měla provést analýza dat. Jednou z oblastí, která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce, nebo-li to, co obecně nazýváme vyhlazováním. Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty a regresní funkce. Po absolvování tohoto kurzu bude student schopen aplikovat tyto metody při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami.
Literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno prezentací metod v počítačové učebně.
Metody hodnocení
Přednáška. Účast na cvičení je povinná. Zkouška je ústní.
Navazující předměty
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Teorie a praxe jádrového vyhlazování

Přírodovědecká fakulta
jaro 2014
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 8:00–9:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Čt 12:00–12:50 MP2,01014a
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty a regresní funkce.Po absolvování tohoto kurzu bude student schopen aplikovat tyto metodz při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhady distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami.
Literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Výukové metody
Přednáška: 2 hod. týdně Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno prezentací metod v počítačové učebně.
Metody hodnocení
Přednáška.Účast na cvičení je povinná. Zkouška je ústní.
Navazující předměty
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Jedná se o inovovaný předmět Neparametrické vyhlazování.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2013
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 10:00–11:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M8113/01: St 10:00–10:50 MP2,01014a
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty a regresní funkce.Po absolvování tohoto kurzu bude student schopen aplikovat tyto metodz při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhadz distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami.
Literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Výukové metody
Přednáška: 2 hod. týdně Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno prezentací metod v počítačové učebně.
Metody hodnocení
Přednáška.Účast na cvičení je povinná. Zkouška je ústní.
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2012
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 8:00–9:50 M6,01011
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Čt 12:00–12:50 MP1,01014
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty a regresní funkce.Po absolvování tohoto kurzu bude student schopen aplikovat tyto metodz při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhadz distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami.
Literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Výukové metody
Přednáška: 2 hod. týdně Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno prezentací metod v počítačové učebně.
Metody hodnocení
Přednáška.Účast na cvičení je povinná. Zkouška je ústní.
Navazující předměty
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2011
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 8:00–9:50 MS1,01016
  • Rozvrh seminárních/paralelních skupin:
M8113/01: St 10:00–10:50 MP1,01014
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty a regresní funkce.Po absolvování tohoto kurzu bude student schopen aplikovat tyto metodz při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhadz distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami.
Literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Výukové metody
Přednáška: 2 hod. týdně Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno prezentací metod v počítačové učebně.
Metody hodnocení
Přednáška.Účast na cvičení je povinná. Zkouška je ústní.
Navazující předměty
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2010
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
Mgr. Jiří Zelinka, Dr. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 8:00–9:50 MS1,01016
  • Rozvrh seminárních/paralelních skupin:
M8113/01: St 10:00–10:50 MP1,01014, St 10:00–10:50 MS1,01016
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty a regresní funkce.Po absolvování tohoto kurzu bude student schopen aplikovat tyto metodz při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhadz distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami.
Literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Výukové metody
Přednáška: 2 hod. týdně Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno prezentací metod v počítačové učebně.
Metody hodnocení
Přednáška.Účast na cvičení je povinná. Zkouška je ústní.
Navazující předměty
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2009
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
Mgr. Jiří Zelinka, Dr. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 9:00–10:50 01031
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Čt 12:00–12:50 MP1,01014, Čt 12:00–12:50 MS1,01016
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty a regresní funkce.Po absolvování tohoto kurzu bude student schopen aplikovat tyto metodz při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhadz distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami.
Literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Metody hodnocení
Přednáška a cvičení v počítačové učebně, účast na cvičení je povinná. Zkouška je ústní.
Navazující předměty
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2008
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
Mgr. Jiří Zelinka, Dr. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 8:00–9:50 N41
  • Rozvrh seminárních/paralelních skupin:
M8113/01: St 7:00–7:50 M3,04005 - dříve Janáčkovo nám. 2a, St 7:00–7:50 N41
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických odhadů hustoty ijedné a více proměnných a regresní funkce.Vlastnosti vyhlazujících splajnů jsou rovněž studovány.
Osnova
  • Základní myšlenka vyhlazování. Obecný princip jádrových odhadů. Jádrové odhady hustoty jedné a více proměnných,kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů. Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů. Vyhlazovací splajny a splajny zachovávající předepsaný tvar křivky. Teoretický výklad na přednášce je vhodně doplněn praktickými úlohami.
Literatura
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Metody hodnocení
Přednáška, cvičení v počiačové učebně. Zkouška :ústní
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2007
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
Mgr. Jiří Zelinka, Dr. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ivanka Horová, CSc.
Rozvrh
Út 11:00–12:50 N41
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Čt 8:00–8:50 M3,04005 - dříve Janáčkovo nám. 2a, Čt 8:00–8:50 N41
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických odhadů hustoty ijedné a více proměnných a regresní funkce.Vlastnosti vyhlazujících splajnů jsou rovněž studovány.
Osnova
  • Základní myšlenka vyhlazování. Obecný princip jádrových odhadů. Jádrové odhady hustoty jedné a více proměnných,kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů. Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů. Vyhlazovací splajny a splajny zachovávající předepsaný tvar křivky. Teoretický výklad na přednášce je vhodně doplněn praktickými úlohami.
Literatura
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Metody hodnocení
Přednáška, cvičení v počiačové učebně. Zkouška :ústní
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2006
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
Mgr. Jiří Zelinka, Dr. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ivanka Horová, CSc.
Rozvrh
Po 12:00–13:50 U1
  • Rozvrh seminárních/paralelních skupin:
M8113/01: St 7:00–7:50 M3,04005 - dříve Janáčkovo nám. 2a, St 7:00–7:50 N41
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických odhadů hustoty ijedné a více proměnných a regresní funkce.Vlastnosti vyhlazujících splajnů jsou rovněž studovány.
Osnova
  • Základní myšlenka vyhlazování. Obecný princip jádrových odhadů. Jádrové odhady hustoty jedné a více proměnných,kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů. Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů. Vyhlazovací splajny a splajny zachovávající předepsaný tvar křivky. Teoretický výklad na přednášce je vhodně doplněn praktickými úlohami.
Literatura
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Metody hodnocení
Přednáška, cvičení v počiačové učebně. Zkouška :ústní
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2005
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
Mgr. Jiří Zelinka, Dr. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ivanka Horová, CSc.
Rozvrh
Út 8:00–9:50 N41
  • Rozvrh seminárních/paralelních skupin:
M8113/01: Čt 13:00–13:50 M3,04005 - dříve Janáčkovo nám. 2a, Čt 13:00–13:50 N21, J. Zelinka
M8113/02: Rozvrh nebyl do ISu vložen. J. Zelinka
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 6 mateřských oborů, zobrazit
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických odhadů hustoty ijedné a více proměnných a regresní funkce.Vlastnosti vyhlazujících splajnů jsou rovněž studovány.
Osnova
  • Základní myšlenka vyhlazování. Obecný princip jádrových odhadů. Jádrové odhady hustoty jedné a více proměnných,kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů. Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů. Vyhlazovací splajny a splajny zachovávající předepsaný tvar křivky. Teoretický výklad na přednášce je vhodně doplněn praktickými úlohami.
Literatura
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Metody hodnocení
Přednáška, cvičení v počiačové učebně. Zkouška :ústní
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2004
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
Mgr. Jiří Zelinka, Dr. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ivanka Horová, CSc.
Rozvrh seminárních/paralelních skupin
M8113/01: Rozvrh nebyl do ISu vložen. J. Zelinka
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických odhadů hustoty ijedné a více proměnných a regresní funkce.Vlastnosti vyhlazujících splajnů jsou rovněž studovány.
Osnova
  • Základní myšlenka vyhlazování. Obecný princip jádrových odhadů. Jádrové odhady hustoty jedné a více proměnných,kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů. Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů. Vyhlazovací splajny a splajny zachovávající předepsaný tvar křivky. Teoretický výklad na přednášce je vhodně doplněn praktickými úlohami.
Literatura
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Metody hodnocení
Přednáška, cvičení v počiačové učebně. Zkouška :ústní
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2003
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
Mgr. Jiří Zelinka, Dr. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ivanka Horová, CSc.
Rozvrh seminárních/paralelních skupin
M8113/01: Rozvrh nebyl do ISu vložen. J. Zelinka
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických odhadů hustoty ijedné a více proměnných a regresní funkce.Vlastnosti vyhlazujících splajnů jsou rovněž studovány.
Osnova
  • Základní myšlenka vyhlazování. Obecný princip jádrových odhadů. Jádrové odhady hustoty jedné a více proměnných,kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů. Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů. Vyhlazovací splajny a splajny zachovávající předepsaný tvar křivky. Teoretický výklad na přednášce je vhodně doplněn praktickými úlohami.
Literatura
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Metody hodnocení
Přednáška, cvičení v počiačové učebně. Zkouška :ústní
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2012 - akreditace

Údaje z období jaro 2012 - akreditace se nezveřejňují

Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty a regresní funkce.Po absolvování tohoto kurzu bude student schopen aplikovat tyto metodz při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhadz distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami.
Literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Výukové metody
Přednáška: 2 hod. týdně Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno prezentací metod v počítačové učebně.
Metody hodnocení
Přednáška.Účast na cvičení je povinná. Zkouška je ústní.
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2011 - akreditace
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
Mgr. Jiří Zelinka, Dr. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických metod odhadů hustoty a regresní funkce.Po absolvování tohoto kurzu bude student schopen aplikovat tyto metodz při statistickém zpracování reálných dat.
Osnova
  • Základní myšlenka vyhlazování.
  • Obecný princip jádrových odhadů.
  • Jádrové odhady hustoty, kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů.
  • Odhadz distribuční funkce, problém volby šířky vyhlazovacího okna.
  • Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů.
  • Teoretický výklad je vhodně doplněn praktickými úlohami.
Literatura
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • Smoothing and regression : approaches, computation, and application. Edited by Michael G. Schimek. New York: John Wiley & Sons, 2000, xix, 607. ISBN 0471179469. info
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Výukové metody
Přednáška: 2 hod. týdně Cvičení: 1 hod. týdně. Cvičení je zaměřeno na aplikaci metod uvedených na přednášce a je doplněno prezentací metod v počítačové učebně.
Metody hodnocení
Přednáška.Účast na cvičení je povinná. Zkouška je ústní.
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M8113 Neparametrické vyhlazování

Přírodovědecká fakulta
jaro 2008 - akreditace
Rozsah
2/1. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. RNDr. Ivanka Horová, CSc. (přednášející)
Mgr. Jiří Zelinka, Dr. (cvičící)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Ivanka Horová, CSc.
Předpoklady
Základy pravděpodobnosti a matematické statistiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie a metody vyhlazování se rozvíji hlavně v posledních letech. Možnost rychlých a ne příliš drahých výpočtů umožnila dívat se na data způsobem,který dříve nebyl možný.Moderní počítače nyní dovolují značnou volnost v rozhodování,jak by se měla provést analýza dat. Jednou z oblastí,která v tomto směru hodně získala,jsou neparametrické odhady hustoty a regresní funkce,nebo-li to,co obecně nazýváme vyhlazováním.Cílem tohoto předmětu je poskytnout přehled moderních neparametrických odhadů hustoty ijedné a více proměnných a regresní funkce.Vlastnosti vyhlazujících splajnů jsou rovněž studovány.
Osnova
  • Základní myšlenka vyhlazování. Obecný princip jádrových odhadů. Jádrové odhady hustoty jedné a více proměnných,kriteria pro posouzení kvality odhadu,problém volby šířky vyhlazovacího okna,kanonická jádra a teorie optimálních jader,jádra vyšších řádů. Různé typy jádrových odhadů regresní funkce,porovnání těchto odhadů, problém hraničních efektů,kriteria pro posouzení kvality odhadů. Vyhlazovací splajny a splajny zachovávající předepsaný tvar křivky. Teoretický výklad na přednášce je vhodně doplněn praktickými úlohami.
Literatura
  • SIMONOFF, Jeffrey S. Smoothing methods in statistics. New York: Springer-Verlag, 1996, xii, 338. ISBN 0387947167. info
  • SILVERMAN, B. W. Density estimation for statistics and data analysis. 1st ed. Boca Raton: Chapman & Hall, 1986, ix, 175. ISBN 0412246201. info
  • WAND, M. P. a M. C. JONES. Kernel smoothing. 1st ed. London: Chapman & Hall, 1995, 212 s. ISBN 0412552701. info
  • Statistical theory and computational aspects of smoothing :proceedings of the COMPSTAT '94 satellite meeting held in Semmering, Austria 27-28 August 1994. Edited by Wolfgang Härdle - Michael G. Schimek. Heidelberg: Physica-Verlag, 1996, viii, 265. ISBN 3-7908-0930-6. info
Metody hodnocení
Přednáška, cvičení v počiačové učebně. Zkouška :ústní
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.