Bi8600 Multivariate Statistical Methods

Faculty of Science
Spring 2007
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Ladislav Dušek, Ph.D. (lecturer)
RNDr. Jiří Jarkovský, Ph.D. (lecturer)
RNDr. Danka Haruštiaková, Ph.D. (lecturer)
RNDr. Eva Gelnarová (assistant)
Guaranteed by
prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Faculty of Science
Contact Person: prof. RNDr. Ladislav Dušek, Ph.D.
Timetable
Tue 9:00–12:50 PUK
Prerequisites
Knowledge on basic unidimensional exploratory statistical techniques, analysis of variance, correlation analysis, simple regression.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Basic mathematical procedures with vectors and matrices.
Correlation structure of multidimensional data.
Distribution of multidimensional data - basic tests.
Cluster analysis.
Discrimination analysis.
Logistic regression.
Introduction to ordination methods.
Canonical correlation.
Application of Markov chains.
Estimating species abundance.
Multivariate analysis of variance.
Syllabus
  • Basic mathematical procedures with vectors and matrices. Introduction to mathematical statistics.
  • Correlation structure of multidimensional data. Similarity of parameters and cases (R-mode and Q-mode analysis).
  • Distribution of multidimensional data - basic tests.
  • Cluster analysis. Basic algorithms and finding of optimal metric for analysis. Similarity coefficients.
  • Discrimination analysis - continuous and bivariate data, basic algorithms of discrimination analysis.
  • Logistic regression - comparison with discrimination analysis.
  • Introduction to ordination methods. Multidimensional nominal data. Principal component analysis. Experimental approaches, graphical output. Factor analysis. Correspondence analysis.
  • Canonical correlation. Multivariate processing of species diversity data. Application of Markov chains.
  • Estimating abundance: Mark and recapture techniques, quadrat counts and line transects, distance methods and removal methods.
  • SAR, QSAR, QSAM.
  • Multivariate analysis of variance (MANOVA).
Literature
  • MELOUN, Milan and Jiří MILITKÝ. Statistické zpracování experimentálních dat. [1. vyd.]. Praha: Plus, 1994, 839 s. ISBN 80-85297-56-6. info
  • Statistické zpracování experimentálních dat :v chonometrii, biometrii, ekonometrii a v dalších oborech přírodních , technických a společenských věd. Edited by Milan Meloun. 2. vyd. Praha: East Publishing, 1998, xxi, 839 s. ISBN 80-7219-003-2. info
  • HEBÁK, Petr and Jiří HUSTOPECKÝ. Vícerozměrné statistické metody s aplikacemi. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1987, 452 s. URL info
  • B. Flury and H. Riedwyl (1988) Multivariate statistics. A practical approach. Chapman and Hall, London.
  • LEGENDRE, Pierre and Louis LEGENDRE. Numerical ecology. 2nd engl. ed. Amsterdam: Elsevier, 1998, xv, 853 s. ISBN 0-444-89249-4. info
  • J. H. Zar (1984). Biostatistical analysis. Prentice Hall. New Jersey.
  • G. W. Snedecor, W. G. Cochran (1971). Statistical methods. Iowa State University Press.
  • HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993, 476 s. ISBN 8020000801. info
  • J. Benedík, L. Dušek (1993) Sbírka příkladů z biostatistiky. Nakladatelství KONVOJ, Brno.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Teacher's information
http://www.cba.muni.cz/vyuka/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2010 - only for the accreditation, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021.
  • Enrolment Statistics (Spring 2007, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2007/Bi8600