PřF:Bi8870 Mechanisms of cell death - Course Information
Bi8870 Mechanisms of cell death, function, methods
Faculty of Sciencespring 2012 - acreditation
The information about the term spring 2012 - acreditation is not made public
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Alena Hyršlová Vaculová, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Alois Kozubík, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. RNDr. Alena Hyršlová Vaculová, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Ecotoxicology (programme PřF, D-BI4)
- Animal Physiology (programme PřF, D-BI4)
- Molecular and Cellular Biology (programme PřF, D-BI4)
- Molecular Biology and Genetics (programme PřF, N-BI)
- General and Molecular Genetics (programme PřF, D-BI4)
- General Biology (programme PřF, N-BI)
- General Biology (programme PřF, N-BI, specialization Ekotoxikologie)
- General Biology (programme PřF, N-BI, specialization Physiology of Animals)
- Course objectives
- Students of the course will acquire knowledge and detailed survey about the role and molecular mechanisms of regulation of cell death, especially apoptosis, in multicellular organisms. Students will understand basic signaling pathways responsible for initiation/execution of apoptosis, and obtain information about individual crucial molecules and their function in modulation of cell death/apoptosis. They will be familiarized with the important role of cell death/apoptosis in development and treatment of various diseases, especially cancer. Finally, students will be provided with a detailed characteristics of modern methods currently available for detection of cell death, their practical applications, and general recommendations.
- Syllabus
- 1) Introduction to cell death field, definition, classification of individual cell death forms, main biochemical and morphological features, physiological importance of cell death in the development and homeostasis of multicellular organisms. Model organisms in apoptosis study, main signaling pathways and apoptosis inductors. 2) Proteases in cell death regulation (caspases, non-caspase proteases, metacaspases). Caspases – definition, characteristics, structure, function, classification, role of individual caspases in apoptosis regulation, caspases substrates and inhibitors. Non-caspase proteases – cathepsins, calpains, granzymes, and their functions. Metacaspases, their structure and function. 3) Mitochondria and nucleus in regulation of apoptosis. Mitochondria: function in apoptosis, oxidative metabolism, mitochondrial membrane permeabilisation and potential, pro- and anti-apoptotic Bcl-2 family proteins, their structure and function. Proapoptotic proteins released from mitochondria. Nucleus: apoptotic biochemical and structural changes of nucleus. Organelle cross-talk during apoptosis. 4) Intrinsic apoptotic pathway. DNA damaging drugs. The role of specific kinases in DNA damage response. The role of p53 protein. Apoptosis and cell cycle. 5) Extrinsic apoptotic pathway. Description of death receptor-mediated signaling pathway, characterisation of death receptors and ligands of TNF family. Physiological role of these ligands and their importance in therapy. Important molecules in extrinsic pathway. 6) TRAIL – a model inductor of extrinsic apoptotic pathway and promising candidate for anticancer therapy. TRAIL-induced signaling pathway. Physiological importance of TRAIL. Molecular mechanisms responsible for regulation of cell sensitivity/resistance to TRAIL. TRAIL in anticancer therapy, new applications. 7) Interaction of extrinsic and intrinsic apoptotic pathways, importance, impact, individual levels. Combined therapy in cancer, principles and applications. New approaches and current research in the field. 8) Apoptosis in disease. Examples of individual diseases related to deregulated apoptosis, and the consequences. New therapeutic possibilities of apoptosis regulation. Apoptosis and cancer – news and future prospects. 9) Characterisation and comparison of individual cell death forms, definitions, description, classification, regulation, significance. Necrosis, autophagy, anoikis, etc. 10) Methods for apoptosis detection – modern methods of cell and molecular biology and biochemistry. Apoptosis detection at the level of cell populations, individual cells, and cellular organelles and molecules. In vitro and in vivo detections. Detailed survey of currently available methods. 11) Principles of selected apoptosis detection methods, advantages, limitations, criteria for selection, applications. Data interpretation. Methods for detection of other cell death forms, principles, individual examples. Discussion 12) Future and new trends in cell death/apoptosis field. Hot topics in apoptosis field. Discussion.
- Literature
- bude specifikováno v prubehu vyuky
- Teaching methods
- lectures accompanied by discussions
- Assessment methods
- Written examination.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- Bi8870en Mechanisms of Cell Death
(!Bi8870) && !NOWANY(Bi8870)
- Bi8870en Mechanisms of Cell Death
- Enrolment Statistics (spring 2012 - acreditation, recent)
- Permalink: https://is.muni.cz/course/sci/spring2012-acreditation/Bi8870