M6170 Analýza v komplexním oboru

Přírodovědecká fakulta
jaro 2012 - akreditace

Údaje z období jaro 2012 - akreditace se nezveřejňují

Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Josef Kalas, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
( M3100 Matem. analýza III || M4502 Matematická analýza 3 ) && M2110 Lineární algebra a geom. II
Matematická analýza: Diferenciální počet funkcí jedné i více proměnných, integrální počet, číselné a funkční posloupnosti a řady, metrické prostory. Lineární algebra: Systémy lineárních rovnic, determinanty, matice, lineární prostory, lineární transformace.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Analýza v komplexním oboru je klasickou partií matematematické analýzy. Má různé elegantní a mnohdy i nečekané aplikace v mnoha oblastech matematiky. Je účinným nástrojem i mimo matematiku, hlavně ve fyzice a technice. Cílem kurzu je seznámit studenty se základy teorie funkcí komplexní proměnné, zejména s integrací v C a Cauchyovou teorií, vlastnostmi holomorfních funkcí, teorií reziduí a jejími aplikacemi.
Po úspěšném absolvování tohoto kurzu bude student schopen:
definovat a interpretovat základní pojmy užívané v základních partiích analýzy v komplexním oboru a vysvětlit souvislosti mezi nimi;
formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů;
porovnat rozdíly mezi teorií funkcí komplexní proměnné a teorií funkcí reálné proměnné;
ovládat efektivní techniky používané v základních oblastech analýzy v komplexním oboru;
aplikovat získané poznatky při řešení konkrétních příkladů včetně příkladů aplikačního charakteru.
Osnova
  • 1. Úvod do předmětu - komplexní čísla, přímka, kružnice, zobecněná kružnice, afinita v C a její speciální případy. Topologické základy, stereografická projekce, Gaussova a rozšířená Gaussova rovina. Posloupnosti a řady komplexních čísel. 2. Funkce komplexní proměnné - spojitost, komplexní diferencovatelnost, Cauchy-Riemannovy rovnice, holomorfní funkce. Řady funkcí, mocninné řady. Elementární funkce, mocnina,odmocnina, exponenciální, logaritmické, goniometrické, cyklometrické, hyperbolické a hyperbolometrické funkce, obecná mocnina. 3. Integrál, Cauchyova teorie - křivky v C, integrace v komplexním oboru, primitivní funkce, nezávislost na integrační cestě. Cauchyova věta, Cauchyovy integrální vzorce. 4. Vlastnosti holomorfních funkcí - Liouvilleova věta, Cauchyova nerovnost, Morerova věta, řady a posloupnosti holomorfních funkcí, Taylorův rozvoj, věta o jednoznačnosti, princip maxima modulu. 5. Teorie reziduí - Laurentova řada, izolované singularity, reziduum funkce v bodě, reziduová věta, aplikace teorie reziduí.
Literatura
  • KALAS, Josef. Analýza v komplexním oboru. 1. vyd. Brno: Masarykova univerzita v Brně, 2006, 202 s. ISBN 80-210-4045-9. info
  • ČERNÝ, Ilja. Analýza v komplexním oboru. 1. vyd. Praha: Academia, 1983, 822 s. info
  • NOVÁK, Vítězslav. Analýza v komplexním oboru. 1. vyd. Praha: Státní pedagogické nakladatelství, 1984, 103 s. info
  • VESELÝ, Jiří. Komplexní analýza. 1. vyd. Praha: Univerzita Karlova v Praze, Nakladatelství Karolinum, 2000, 244 s. ISBN 80-246-0202-4. info
  • LANG, Serge. Complex Analysis. 3. vyd. Springer-Verlag, 1993, 458 s. ISBN 0-387-97886-0. info
  • JEVGRAFOV, Marat Andrejevič. Funkce komplexní proměnné. Translated by Ladislav Průcha. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1981, 379 s. URL info
  • JEVGRAFOV, Marat Andrejevič. Sbírka úloh z teorie funkcí komplexní proměnné. Translated by Anna Něničková - Věra Maňasová - Eva Nováková. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1976, 542 s. URL info
Výukové metody
přednášky a cvičení
Metody hodnocení
Výuka: přednáška 2 hod. týdně, cvičení 2 hod. týdně. Zkouška: písemná a ústní.
Informace učitele
Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky prokazuje schopnost praktické aplikace získaných poznatků na konkrétní příklady a dosažení potřebné početní praxe. Při písemné části lze dosáhnout maximálního počtu 4 bodů. K postoupení k ústní části zkoušky je třeba získat alespoň 1,5 bodu. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.