PřF:Bi7496 Modern regr.& class.tech.biol. - Informace o předmětu
Bi7496 Modern regression and classification techniques in computational biology
Přírodovědecká fakultajaro 2013
- Rozsah
- 0/0. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: z.
- Vyučující
- prof. Michael Schimek, Ph.D. (přednášející)
RNDr. Tomáš Pavlík, Ph.D. (cvičící)
RNDr. Eva Gelnarová (cvičící) - Garance
- prof. RNDr. Ladislav Dušek, Ph.D.
RECETOX – Přírodovědecká fakulta
Dodavatelské pracoviště: RECETOX – Přírodovědecká fakulta - Předpoklady
- Students should be familiar with the basics of the regression modelling. There will be an introduction into R at the beginning of the computer laboratory.
- Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- The aim of this course is to introduce students to modern regression and classification methods and its extensions that constitute a core part of multivariate statistics. The goals can be summarised as follows:
To demonstrate various new approaches that have been developed in last twenty years and which are appropriate for the analysis of biodata.
To describe the assumptions of parametric models and how to check them.
To show how to control the model flexibility when our task is fitting models to quantitative observations.
To teach students how to perform predictive tasks, e.g. in risk estimation.
To demostrate how to cope with the size and complexity of the data using special techniques that have been proposed recently. - Osnova
- * Typical applications of regression and classification techniques in computational biology.
- * Typical data structures (errors, complexity, size, and dimensionality) in the modern biosciences.
- * The concept of regression model fitting.
- * The concept of statistical learning (prediction).
- * Curse of dimensionality and ill-posed problems (incl. n much smaller then p-problem).
- * Complexity control, regularization, and penalization.
- * The role of computing and algorithms.
- * Introduction to smoothing techniques (including k-Nearest-Neighbors).
- * Generalized additive non- and semiparametric regression models.
- * Metric, distance, and similarity.
- * Regression and classification trees.
- * Linear classification methods and extensions.
- * Nonparametric classification methods.
- * Support vector machines as statistical learning tool.
- Literatura
- Hastie T., Tibshirani R., and Friedman J. The elements of statistical learning - data mining, inference and prediction. Springer, NewYork, 2001.
- Výukové metody
- In the lectures (2 hours) selected statistical approaches and appropriate computer concepts are introduced. In the computer laboratory (2 hours) applied data problems are discussed and analyzed with R procedures.
- Metody hodnocení
- Each student is requested to do a small case study on her/his own as an exercise. The results should be summarized in a short written report in English and subsequently presented to other students for discussion.
- Vyučovací jazyk
- Angličtina
- Další komentáře
- Předmět je vyučován jednorázově.
- Statistika zápisu (jaro 2013, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/jaro2013/Bi7496