M8986 Statistická inference II

Přírodovědecká fakulta
jaro 2015
Rozsah
2/2. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (přednášející)
Garance
doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M8986/01: Čt 10:00–11:50 MP2,01014a
Předpoklady
M7986 Statistická inference I
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět se zabývá testováním statistických hypotéz Waldovým principem, věrohodnostním poměrem a skóre principem na základě propojení teorie s MC simulacemi, implementaci v jazyce R, geometrii a statistickou grafikou v spojitosti s plánováním vědeckých studií pro kategorická data. Na konci tohoto kurzu bude student schopen: (1) porozumět a vysvětlit metody parametrické statistické inference pro diskrétní data, (2) implementovat tyto metody v jazyce R, (3) aplikovat je na konkrétních datech.
Osnova
  • vybraná diskrétní rozdelení pravdepodobnosti, maximálne věrohodné odhady jejich parametrů,
  • principy MC simulačních experimentů pro testování statistických hypotéz,
  • plánování experimentů pro jedno-, dvou- a vícevýběrový případ,
  • plánování experimentů pro kontingenční tabulky,
  • plánování experimentů pro regresní modely pro kategorická data
Literatura
  • COX, D. R. Principles of statistical inference. 1st ed. Cambridge: Cambridge University Press, 2006, xv, 219. ISBN 0521685672. info
  • CASELLA, George a Roger L. BERGER. Statistical inference. 2nd ed. Pacific Grove, Calif.: Duxbury, 2002, xxviii, 66. ISBN 0534243126. info
Výukové metody
Přednáška: 2 hod. týdně.
Cvičení: 2 hod. týdně.
Metody hodnocení
Domácí úkoly, ústní zkouška.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2014, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.