PřF:F5090 Electronics - Course Information
F5090 Electronics
Faculty of ScienceSpring 2020
- Extent and Intensity
- 2/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Pavel Sťahel, Ph.D. (lecturer)
Ing. Miroslav Zemánek, Ph.D. (lecturer) - Guaranteed by
- Ing. Miroslav Zemánek, Ph.D.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: Ing. Miroslav Zemánek, Ph.D.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science - Timetable
- Tue 8:00–10:50 Fs1 6/1017
- Prerequisites
- F2050 Electricity and Magnetism
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Physics (programme PřF, B-FY)
- Physics with a view to Education (programme PřF, B-EB)
- Physics with a view to Education (programme PřF, B-FY)
- Physics with a view to Education (programme PřF, B-GE)
- Physics with a view to Education (programme PřF, B-GK)
- Physics with a view to Education (programme PřF, B-CH)
- Physics with a view to Education (programme PřF, B-IO)
- Physics with a view to Education (programme PřF, B-MA)
- Course objectives
- This lecture introduces students to the most important active and passive electronic elements and electrical circuits. Principle and characteristics of these elements will be also explained. Simple circuits containing these elements are parts of electrical devices and apparatus. Knowledge of function of these circuits would contribute to the understanding of the function of more complicated devices and their better use.
- Learning outcomes
- After completing the subject, students will understand the activities of active and passive elements and on the basis of this knowledge, they will be able to design simple connections and devices, adjust the parameters of existing devices according to their needs, also gain the ability to orientate in electronic circuits.
- Syllabus
- Electronic elements, active and passive two-poles, two-ports, voltage and current sources. P-N junction, semiconductor diodes (Zener diode, tunnel diode, varicap, photo-diode and luminescent diode). Connection of two-ports, simple passive two-ports, transmission properties. Transistors (FET, bipolar)boundary working conditions, setting and stabilisation of working point. Switching two-ports. Transistor as a amplifier, basic transistor stages SE, SB, SC, Darlington connection, feedback, differential amplifier. Filters RC, LC, integration and derivative element. Rectifier and stabilizers. Oscillators LC, RC, Crystal oscillators. Operational amplifiers, non-inverting and inverting voltage amplifiers, comparator, integrator, converters with logarithmic characteristic. Switching circuits, Schmitt circuit, multivibrators. Logical functions and their realisation using of logical gates.
- Literature
- ONDRÁČEK, Zdeněk. Elektronika pro fyziky. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 95 s. ISBN 8021017414. info
- Teaching methods
- Classical lecture, classical class exercises.
- Assessment methods
- Written and oral examination. In the case of combined studies it is requirement the completion of class exercises and elaboration of seminary work.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2020, recent)
- Permalink: https://is.muni.cz/course/sci/spring2020/F5090